AD-AD96 546 ANALYTIC SERVICES INC ARLINGTON VA
RESOURCE ALLOCATION METHODOLOGY FOR AIR FORCE RaD PLANNING, {U)

F/6 S/1

UN_ 80 G COOPER» S ADAMS,

J J CLARYe J PERLIS
UNCLASSIFIED ANSER-TDN-80-1

F&89620-77=C-0025
NL

‘ —

,/z S e

~Z.° RESOURCE ALLOCATION METHODOLOGY
FOR AIR FORCE R&D PLANNING,

ﬁn) ! “‘;”‘/
é/ Junesawgd j

7

G./Cooper Project Leader
S./Adams

J.Clary |
J.Perlis |

[TV

———

‘:’w _— s ’v'\. fre '_, ;: e
L)I F/// / T {/," T :
' Appr‘oved by
C. Foreman, Division Manager

Approved for public release,
cistnibution untiMited

[Accession Far |
Fitts craet -4l
DTIC TAR |
Unanpnonnzed 1
Justifieation |

anser ineis Services e,

400 Army-Navy Drive, Arlington, Virginia 22202

BV]

Piateisnilans

Availarility 7 g

Avelll o o
Dist ‘ Special

|

q

it oSl o

PREFACE

During fiscal 1979, the Director of Program Integration,
AF/RDX, tasked ANSER to identify and develop a methodology
for allocation of funds among Air Force research, develop-
ment, and acquisition programs. This report, which consists
of four volumes (bound as one document for convenience of user),
describes work accomplished in response to that tasking and
discusses the resulting resource allocation methodology (RAM).
Although RAM has been developed and tested successfully, our
experience to date with its use suggests that its future appli-
cation will be limited unless a method for guantitative evalu-

ation of programs can be devised and implemented.

kit

!
}

E Ry T S

RESOURCE ALLOCATION METHODOLOGY FOR
AIR FORCE R&D PLANNING

Volume 1l: Summary Report

YIRS

Page

I. INTRODUCTION . & ¢ & ¢ o & o o o o o o o o o o o 1 ;
II. THE RESOURCE ALLOCATION METHODOLOGY. 3

A. OUr APPTOACH ¢ &+ v v & & « o o o« o « o o o 3
B. The Allocation Methodology « 4 I
C. Computer Implementation. . . . « « « « « . . 6

III. APPLICATIONS OF THE !._THODOLOGY. . . . ¢« « +« .+ . 9
A. Large-Scale Applications 9
B. Special-Purpose Applicatioces & &0 o v o . . . 9

IV. CONCLUSIONS. . o ¢ o & &« o o o o o s o o o o o 11

I. INTRODUCTION

This volume is one of four that document ANSER's develop-
ment of a resource allocation methodology (RAM) for the
Director of Program Integration, AF/RDX. Each volume empha-
sizes a particular aspect of our research and can be.read
independently of the others. Volume 1 is an overview of the
work accomplished. Volume 2 describes the RAM technique
itself and how to use the general-purpose computer programs
that incorporate it. Volume 3 discusses how to use the
interactive computer program developed for use of RAM within
AF/RDX. Volume 4 reports on tests made to determine the
computational performance of RAM,

In fiscal 1979, AF/RDX reguested that ANSER conduct an
investigation of analytic techniques that could be used
to allocate resources and, if a suitable methodology was
found, we were to develop it. The need for such a metho-
dology stems partially from the large number of program
elements (PEs) that planners must consider. For example, a
single budget could contain over 300 PEs, each of which is
proposed at three or four alternative funding levels, called
decision packages., Each decision package, which represents
some variation on the content of the PE, contributes more or
less to the achievement of associated objectives. Objectives
include operational needs identified by Mission Area Analysis
and other goals that Air Force officials may establish.
Furthermore, the Program Objectives Memorandum (POM) is to
plan for a 5-~year period, which means considering multiple
fiscal constraints. Therefore, a large number of factors

must be considered.

The basic resource allocation problem can be stated as
two questions: At what decision level should each PE be
funded to achieve the greatest contributions to the specified
objectives while recognizing fiscal constraints over a period
of several years? As the availability of fiscal resources
increases or decreases, how should the investment strategy be
changed to maintain the greatest overall contribution?

We believe we have developed a unigue and potentially
useful methodology for formulation of investment strategies.
However, use of the methodology requires identification of i
the objectives of interest and evaluation of the contributions
of program alternatives to achievement of those objectives.
Unless these requirements can be met in a practical way,
application of the methodology will be limited. AF/RDX has
asked us to address this problem in subsequent research.
Chapter II of this volume summarizes our approach to develop-
ment of the methodology, Chapter III describes how the
resource allocation methodology has been and can be used. 1In
Chapter IV, we give our conclusions concerning the utility of
the methodology and discuss requirements for its further

implementatiocn.

I1. THE RESOURCE ALLOCATION METHODOLOGY

A. Our Approach

Our approach to the development of a resource allocation
methodology recognizes the multiplicity of objectives that
must be considered and their frequently conflicting nature.
Furthermore, the benefit from achievement of one objective
can rarely be estimated quantitatively in the same terms as
thcse describing other benefits. Therefore, our problem was
to develop a methodology that could attempt to simulitaneously
maximize several incommensurakle benefits. This approach
contrasts with techniques that attempt to reduce the problem
to one in which a single benefit measure is used to develop
an investment strategy. One accepted single-benefit tech-
nique ranks alternatives by their ratios of benefits and costs;
alternatives are then deleted in ascending order from the
bottom of the list until the specified budget constraint is
no longer exceeded. Unfortunately, the aggregate benefit of
the retained alternatives may not be the largest obtainable.
Consider, for example, the four alternatives in Table 1, which
we ranked in order of benefit/cost ratio. At a sample budget
of 18 units, only the first two projects could be funded for
a total benefit of 9. However, if the third is substituted
for the first, the cost of 17 would be within the allowable
budget and the benefit is 10, a number greater than the

original allocation.

A second problem exists with use of a single benefit/cost
ratio if the cost is obtained by summing multiyear costs,
since infeasible cost profiles could easily result. 1In other
words, the sum of the costs of the projects in an R&D pro-
gram may not violate the sum of the fiscal constraints in
various years, but in a given year, those costs could indeed
violate the fiscal constraints.

3

TABLE 1
SAMPLE ALTERNATIVES BY BENEFIT/COST RATIO

Alternative Cost Benefit Benefit/Cost Cumulative Cost
1 6 3/4 8
2 3 3/5 13
3 12 7 112 25
4 i5 5 1/3 40

B. The Allocation Methodology

The resource allocation methodology that we selected after
investigation of several technigques employs goal programmirg.
Use of the technique requires definition of a set of goals
and their classification into subsets having different prior-
ities for achievement. For example, as a class, operational
goals may be afforded a higher priority than that afforded
programmatic goals. Furthermore, goals within each subset
will usually differ in importance. Consequently, the im-
portance of each goal within every subset must be specified.
Specification of the relative priorities of the subsets andi
the relative importance of the goals in each subset permits
use of a priority goal structure for development of an invest-
ment strategy. This procedure always finds the investment
strategy that most closely satisfies the first-priority goals.
The procedure then attempts to satisfy the second-priority

. iy

gy

S

—

goals without degrading the achievement of first-priority
goals., This process continues for all successive priority
levels., (See Volume 2 for additional explanation of the

process.)

This procedure adequately represents all important aspects
of the allocation process. It provides substantiel flexibility
in its representation of the preferences of the decision-maker
and in its recognition of the complex, multigoal nature of
the decision. Through use of the priority goal structure
most practical considerations can be represented. A need to
comply with agreements to pursue certain programs can, for
example, be represented as a Priority 1l goal. Goals not
quantifiable in the same terms can be represented on different
priority levels, which precludes any need to compare "apples
and oranges". Any type of goal can be incorporated into the
structure as long as the user of the method can evaluate the

alternatives with respect to it.

We selected an algorithm for determination of the preferred
investment strategy that is an adaptation of a technique de-
veloped by Petersen.l It ranks the alternatives according
to an average benefit/cost ratio and then improves the
solution by examining various exchanges between the unfunded
alternatives and those initially funded. 1In other words, it
finds a workable solution and proceeds systematically to im-
prove it. (See Volume 2 for complete description of the

algorithm,)

1Petersen, Clifford C., "A Capital Budgeting Heuristic
Algorithm Using Exchange Operations," AIIEF Transactions,
VI, 2 June 1974.

4—-—-—-—-—-—-___&.1

The technique does not examine all possible combinations of
alternatives. Instead, it uses deductive rules to eliminate
combinations that need not be considered, realizing substantial
efficiency. Observe that the algorithm begins with the type
of strategy that results from the techniques discussed in
Section II.A and then improves it.

C. Computer Implementation

We wrote two types of computer programs to solve resource
allocation problems. The first type consists of general-
purpose representations of the methodology, called RAM/GP
and RAM/VM. RAM/GP and RAM/VM could be used with any kind
of resource allocation problem for which data are available.
RAM/GP contains the methodology described in the previous
section in which the user wishes 0 come as close as possible |
to the specified goals. In some cases, however, the user :
cannot, or may not want to, specify an explicit objective

value as a goal. The user may, instead, simply wish to
maximize the contributions made to all goals, which is possible
using RAM/VM. This form is equivalent to the previous one in
which goals are simply set at unreachable levels. 1In fact,
both programs would find the same solution. However, use of
RAM/VM can be more efficient if the less complex data it
requires are available. Volume 2 describes both RAM/GP and
RAM/VM.

The second type of program is a special-purpose program.
It consists of RAM/VM imbedded in a larger, user-interactive
program, and was designed to demonstrate the day-to-day use
of the method by those responsible for formulating investment
strategies. The methodology is tied to the program element
(PE) data base used by AF/RDX. By operating a computer ter-
minal, a user obtains access to the data for the programs

for which he has responsibility (and only those programs).

Then by following simple procedures in response to prompting by
the computer, the user can specify alternative budgets for

any number of years desired and receive, usually in seconds,
the alternatives to be funded that represent the best invest-
ment strategy. If he generates alternative strategies in
response to revised fiscal constraints, the results are
accumulated and displayed in the form of cost/benefit curves.
Hard copies of the curves are available as soon as the plots
are made. The program is special purpose because it was
designed for the type of hardware available at the AF/RDX
computer site (Multics computer system) and was tied to the
official PE data base as it existed in fiscal 1979. It demon- ¥
strates the ease with which the methodology can be used to
examine the impacts of enhanced or decremented budget ceilings
on the investment strategies. By front loading (shifting
funds to earlier periods) or back loading (shifting funds to
later periods), the user can examine the impact of the resul-
tant investment strategies in terms of the impact of the
progress made toward selected goals. Such excursions make

the methodology useful for multiperiod planning on a quick-]
turnaround basis. We describe this computer program in
Volume 3.

We tested the performance of these programs in a process
described in Volume 4, examining both the solution accuracy
of the programs and the time required to solve problems of ’

various sizes. However, because our methodology is so much

more efficient than other available techniques, it was difficult
to get a standard for judging the performance of our programs.

Testing of this kind is very expensive, and in many cases, the
only available commercial routine we could use to establish a

solution failed to reach a solution in a practical time. RAM/
GP provides practical solution times (on the order of a few
minutes) for problem sizes of 200 to 250 decision variables
(possible alternatives), while RAM/VM provides practical so-
lution times for larger problems. The practical problem size
limitation of the commercial routine was an order of magnitude
less and restricted our comparison tests to smaller problems
of approximately 45 variables. For problems of this size,
statistical analysis indicates a reasonable degree of con-
fidence that RAM results are optimal or near optimal. We
believe that the accuracy of results will hold for even larger
problems, although we have no statistical basis for that be-
lief,

IITI. APPLICATIONS OF THE METHODOLOGY

A. Large-Scale Application

We have been unable to apply the methodology on a large-
scale primarily because no institutionalized procedures exist
within Headgquarters USAF for making quantitative evaluations
of R&D alternatives. Although at the outset of our work some
attempts to formulate and institutionalize such a process
had been made,* the process no longer exists.

B. Special-~Purpose Applications

RAM has been used for allocating resources in a number of
special purpose applications. The methodology has been trans-
ferred to computers at the Aeronautical Systems Division (ASD)
where it has been used in a pilot study of avionics R&D pro-
grams, and where it will be used to allocate resources among
aeropropulsion R&D programs.

We have also used RAM within Hg USAF to assist in the
development of an armament functional area plan. This func-
tional area cuts across four mission areas: counterair,
close air support/battlefield interdiction, defense suppression,
and interdiction. We derived goals from appropriate Mission
Area Analysis tasks, e.g., targets of various types to be
destroyed in various weather conditions. These goals com-
prised the first priority level and were assigned the relative
importance identified in the MAA process. We also identified
a single goal at the second-priority level, namely to decrease

*This process is described in "Mission Area Resource Alloca-
tion for Air Force R&D," Defense Systems Management FReviev,
Volume 2, Spring 1979,

procurement spending where possible by competitive bidding.
This goal consumes R&D resources to fund multiple contractor
involvement in parallel RDT&E efforts.

We formulated funding alternatives that were associated
with a unique set of products (armament systems or subsystems)
completion dates, risk factors, and cost elements of the
decision package sets for the 19 program elements in the

functional area.

We determined the impact of each product on the ability
of the Air Force to meet the specified operational goals
using a linear measure of increase in force effectiveness.
Then, this contribution was enhanced or degraded, depending
on the timeliness of the product, in meeting the threat and
the technical risk involved in developing the product.
Summing the contributions of the products of each funding
alternative provided a linear index of value for each funding
alternative. We then introduced the procurement savings
(if any) produced by a funding alternative as a second-

priority goal.

We made a number of RAM runs representing excursions on

budoet ceilings, and benefit/cost curves were produced. Re-
sults to date have been well accepted by the tasking office.

IV. CONCLUSIONS

The resource allocation methodology (RAM) that we de-
veloped can be used in the formulation of R&D investment
strategies (if a practical process for evaluation of alter-
natives can be devised) and in any type of resource alloca-
tion decision that must choose among discrete alternatives.
We believe that RAM is a unique technique that can reflect
the significant aspects of most allocation decisions. We
know of no other technique that formulates and solves the
allocation problem in the same manner as that used in RAM.

RAM can be refined and extended in several ways. For
example, additional work could produce a general-purpose
interactive program of the type demonstrated, but which allows
the user to work with more of the data base than the fiscal
constraints, e.g., to interactively change goals or costs
and evaluations of the alternatives. Also, an output pro-
cessor should be developed to interpret the changes in results
when running excursions on the budget ceilings. Such a
processor would highlight the impact on the goals that results
when running such excursions. These are essentially data
management or bookkeeping improvements, but they would en-
hance the utility of the method.

Also, while the RAM programs are sufficiently accurate
and efficient for the problems we envision, further research
could possibly provide some improvements in efficiency if
improved efficiency is required. We have found one technique
that could improve efficiency, but a major development and
test program would be required to verify its potential. An

improvement in efficiency could increase the effective pro-
blem size of RAM.

Such improvements are of second-order importance; however,
the most significant problem in wide-scale use of RAM is the
lack of a procedure for evaluating alternatives. If it is
feasible to develop and implement such a procedure, we will
then be able to provide the decision-maker with an assurance
that the best possible strategy with respect to the specified
goals has been identified. This strategy will certainly not
replace the decision-maker; rather, it will assist him by
providing a strategy reflecting those considerations chosen
for explicit representation. It will provide the decision-
maker with more time to review the resource allocation and,
perhaps, to improve it further by applying his own expertise

on matters that have not been explicitly assessed.

b ks s

RESOURCE ALLOCATION METHODOLOGY FOR
AIR FORCE R&D PLANNING

Volume 2: Methodology and Computer Programs

CONTENTS
vVolume 2
Page

é I. INTRODUCTION . & v v v ¢ v e o o o o o o o o o o @ 1 }
¢ :
l II. THE RESOURCE ALLOCATION MODEL . . . « . . « . . . 3 ;
t !
| A. Mathematical Formulation of the Problem . . . 3
f B. Solution Algorithm 7
I

III. USING THE COMPUTER PROGRAMS + . « « . 11

A. Guide to RAM/VM . ¢ . ¢ ¢ ¢ « 4 ¢ o o o o o @ 11

1. The Resource Allocation Problem 11

2. Data Input+ . ¢ ¢ ¢ o . . .« e 13 1
i 3. Solution Output « « « . « . .. 13

4, Sample Problem « . ¢« & « ¢« « « 15 !

5. Limitations Due to Size of Problem ., . . . 19

6. Computational Experience « +« .« . 20

B. Guide to RAM/GP . v v « v v o 4 ¢ o ¢ o « o 20
IV. COMPUTER CODES . . & v ¢ &t v o o o o o o o o o o 23

A. RAM/GP . . v v v v v v v e o v e e e e e e e 23
B, RAM/VM 0 0 v v v e e e e e e e e e 34

ii

I. INTRODUCTION

This volume is one of four that document ANSER's de-
velopment of research and development (R&D) resource allo-
cation methodology (RAM) for the Director of Program
Integration, AF/RDX. Volume 1 summarizes the work and its
applications. Volume 2 describes the RAM technique and
how to use the computer programs that incorporate it.
Volume 3 describes additional software developed to demon-
strate the RAM technique, and Volume 4 describes the way in
which we tested the computational capability of the RAM pro-
grams., Each volume emphasizes a particular aspect of our
research and can be read independently of the others.

This volume concentrates on the technique we adopted to
solve the resource allocation problem and the associated com-
puter programs. In Chapter II, we describe what the computer
programs do in a mathematical sense, and in Chapter III we
describe how to use them. The reader who is not interested
in the underlying technical process can probably bypass
Chapter II and apply the programs using only the discussion
contained in Chapter III. However, some knowledge of com-
puter programming and mathematics is necessary. Chapter IV
contains the computer codes for these programs.

In the discussion, we frequently use the vocabulary of
the R&D resource allocation problems for which we developed
the technique. However, the procedure and computer programs
are applicable to a wide range of mathematical optimization
problems as described in Chapter II. Although the reader
may have to translate our vocabulary to that of his problem,
we hope that this volume can be used as a manual for other

applications.

II. THE RESOURCE ALLOCATION MODEL

In this chapter, we describe the role of the RAM
(Resource Allocation Methodology) computer programs. The
discussion is necessarily technical. The reader who is not
technically inclined can omit this chapter if he wishes
merely to apply the technique, although a scan of at least
the first part of Secion II.A, which describes our model
of the decision process, is recommended. Section II.B
contains a summary of the central RAM algorithm.

A. Mathematical Formulation of the Problem

In the RAM, the decision process involved in allocating
resources is modeled as a mathematical optimization problem:
the packing problem. This problem can be explained with a
physical analogy in three dimensions. Imagine a large box
that must hold a number of smaller boxes of varied sizes.
Each small box has an associated measure of value, and not
all the small boxes will fit simultaneously in the large box.
The problem is to pack the large box so that the total value
of small boxes contained within is maximized. The three
dimensions of this problem correspond to the length, width,
and depth of the large box. Note that each small box uses
up some of each of these dimensions., 1In the R&D resource
allocation problem, for example, the number of budget periods
considered corresponds to the dimensionality of the associat-
ed packing problem. Each R&D project alternative (or each
small box) potentially uses up some amount in each budget
period and some associated measure of benefit.* The problem

*See Volume 1 for a discussion of benefit measures and other
aspects of this problem.

3l g

then becomes to maximize the total benefits subject to the
budget constraints.

This model of the decision process has three main com-
ponents. First, there is a set of discrete alternatives
that must be selected on a yes or no basis. They are
represented by decision variables whose values, typically
0 or 1, correspond to nonselection and selection, respective-
ly. The solution algorithm determines these values. Second,
there is an index representing the degree of effectiveness
that results when a particular alternative is selected.
Finally, there is a measure of the resources that must
be consumed in any dimension (such as budget periods) to
accrue these benefits. We normally refer to the resource
consumption as a "cost", although these resources may not
be dollars.

The basic multidimensional packing problem can be further

defined as follows:

Let Z represent the total achieved system effectiveness
(benefit)

n
Maximize Z = I A.X.

Subject to:

o]

IC,, X.<b. 3Jj=1,...,M
i=1 ¥ 1

X; € {o-1} wi

where:

xi is a decision variable taking on a value of 1

if the ith option is in the solution, and 0
otherwise.

Sdnin

A, is the effectiveness index (a linear mea-
sure of benefit) of the ith option.

is the cost of the ith option with respect
to the jth dimensional constraint,

b. is the maximum amount of resources avail-
J able in the jth dimension.

In many cases, this would be a satisfactory representa-
tion of a resource allccation decision process. However,
for R&D and perhaps many other resource allocation problems,
the decfsion is substantially more complex because it must
be made with respect to many objectives or goals. Further,
the decision-maker may decide that some goals have a higher
priority than others. To reflect these very real complexi-

ties, we extended the multidimensional packing problem.

Suppose system performance must be measured against Mr
objectives (goals) of which goals 1 to Ml are in the first
priority level, goals (Ml + 1) to M2 are in the second pri-
ority level, and so on. First-priority goals must be
satisfied as far as possible before other goals can be satis-
fied. Furthermore, goals at the second priority level can
be satisfied only if their satisfaction does not degrade the
already achieved goals and so on down the line. Each priority
level comprises a vector element in the achievement function.
Thus we write:

M1 Mr
™ (W, N),.. z W, N
Minimize z = |,2p K kK''°777 4y +1 Kk
(r-1)
Subject to: n
iil Alkxi + Nk = Gk k=l,...,Mr

Ll

where:

Cij

is a decision variable taking on a value
of 1 if the ith option is in the solution,
and 0 otherwise.

is the effectiveness index of the ith
option relative to the kth goal.

is the desired effectiveness against the
kth goal. sz 0

are negative deviation variables indicat-
ing the amount by which a solution fails
to satisfy the kth goal,.

is the weight (relative importance) attached
to satisfying the kth goal. These can be
viewed as penalty factors. If we fall short
of the kth goal by 2 units, the associated
element in the achievement vector (to be
minimized) is increased by 2 Wk units.

is the cost of the ith option in the jth
dimension (e.g., budget period).

This formulation, called goal programming, is distin-
guished by the form of the objective function, which minimizes

the deviation from specified goals. It also contains a set
of weighting factors, {wk} , which allow the goals on each

priority level to be given a relative importance,

It is not always desirable or possible to specify ex-

plicit, quantitative goals. Instead, one may simply wish to
find the resource allocation that maximizes the contributions

of the chosen alternatives with respect to all the goals,
This is egquivalent to the previous formulation in which all
the goals have been set to a level higher than that obtain-
able; that is, where:

This method is called a vector maximization formulation of the

decison process.

Goal programming and vector maximization formulations
are fundamentally related, and so their respective programs,
RAM/GP (goal programming) and RAM/VM (vector maximization),
are very nearly the same. The solution algorithms, the
means of determining the Xi' are the same. We simply obtain
certain efficiencies in using RAM/VM by recognizing in
advance when a maximization model, rather tnan one in which
explicit goals are required, is the best model of the decision

process.

One additional refinement of the decison process is in-
corporated in both RAM/GP and RAM/VM. The subsets that
contain mutually exclusive alternatives are incorporated in
the solution procedure. In other words, alternatives may
be formed into groups, and no more than one can be in the
solution. This arrangement models the case in which the
decision is to determine, for many programs, which of
several predefined alternatives should be selected.

B. Solution Algorjithm

The decision models chosen can be adapted to various so-
lutions by a wide range of integer programming technigues.
In this class of problems, however, the analyst must choose

an acceptable tradeoff between true optimal solutions, pro-
blem size, and run-time considerations. Very often, a search
for a true optimal solution using one of the classical in-
teger programming techniques results in impractical computer- T
resource requirements for a problem of any real size. The

technique employed in RAM to solve the goal programming and i
vector maximization packing problems previously defined is
based on a variant of the direct-search technique developed

by Clifford Petersen at Purdue University.l Petersen's
method performs to well within the margin of data uncertainty
for the R&D resource allocation problem we addressed, while
allowing large problems to be solved relatively quickly with
very small demands on computer hardware resources. (See
Volume 4 for details on the results of a series of test

runs made to ascertain RAM performance characteristics rela-

tive to certain other techniques.) +
The steps for completing the RAM/GP, RAM/VM algorithm are

as follows:

1. Compute for each R&D alternative i, its mean proportionate
demand on budget funds, R,, where {

| 83

2. Compute the relative independent benefit/cost ratio vec-
tor for each alternative, Xﬁi, where

1

Petersen, Clifford C., "A Capital Budgeting Heuristic Al-
gorithm Using Exchange Operations," AIIE Transactione, VI,
2, June 1974,

Sa,

6a.

7a,

8a.

9a.

5b.

Pick for each alternative group (subset of mutually

exclusive alternatives) the R&D alternative with the
highest value Kﬁi. Place these alternatives in the
"in" set. Rank in descending order of Xﬁi values.
Place the remaining alternatives in the "out" set.

Delete alternatives from the bottom of the "in" set
until budgets are not exceeded in all budget periods.
Place deleted alternatives in the "out" set. If problem
requires vector maximization formulation go to 5a. If
problem requires goal programming formulation go to

5b.

Compute Xi = XEi. R; for all alternatives. Rank the
"in" set in order of increasing Xi values. Rank the

"out" set in order of decreasing Ki values.

Subject to dominance rules deriving from the ranking,
find the best exchange (2~for-l1 or l-for-1l) between
the "out" set and the "in" set. If no such exchange
improves the solution, go to step 8. (Exchanges must
preserve budget feasibility).

Rerank the new "in" and "out" sets as in steps 5a and
6a.

If any funds are left, try to include some level of
any unfunded alternative. This is called "Fitback".

STOP

Compute provisional achievement of goal k; gy for all
goals, For each variable in the solution at the Pri-
ority 1 level, compute Aik’ the contribution of variable

i to the satisfaction of goal k.

6b.

7b.
8b.

9b.

let Qik max (0,(aik + Gk - gk))

then let Aik = min (aik' Qik)

Then compute the total weighted contribution of variable
i; Ki for the variables in the solution

W, A, i

k Tik'" ! kik

N~

r
k M(r-1)+1

Rank the "in" set in order of increasing Xi values.

Subject to a weakecned set of dominance rules, find the
best exchange (2-for~l or l-for-1l) between the "out"
set and the "in" set. To test an exchange for pro-
fitability, remove the "in" set variable(s) in its
solution, insert the "out" set variable(s) in its
place, and an Xi value for the new variables as was
done in step 5. Compare Kis. {Exchanges must main-
tain budget feasibility.) If no profitable exchange
is found, go to step 8b.

Go to step 5b.

If any funds are left, try to include some level of
any unfunded alternative (Fitback).

STOP

10

III. USING THE COMPUTER PROGRAMS

In this section, we describe how to use the RAM/VM and
RAM/GP computer programs. These programs solve a resource
allocation problem with multiple, prioritized objectives
in which constraints are placed on resource use over time.
RAM/VM selects the set of alternatives that maximizes
the contributions toward the objectives within resource
limitations. Most of our experience to date has been with
RAM/VM because of its easy application to existing data.
Consequently, we devote most of the discussion to this
formulation. Because RAM/GP is used in a very similar fash-
ion, we confine our discussion of this formulation to the
areas in which it differs from RAM/VM,.

These programs are described as being in a free-standirc
mode, which we used. They are easily imbedded in an inter-
active program for repetitive use. In fact, we have done
this with RAM/VM to demonstrate the process. However,
because this demonstration program is useful only on a par-
ticular computer and with particular terminals, it is
described in Volume 3. RAM/VM and RAM/GP are more general.
They have been coded in FORTRAN for use on the Multics
computer system, as installed on the Honeywell Series 68/
Level 60 computer. Modifications to the coding may be re-
guired in the input/output, load/compile, and execute job
control language for use on other computing systems.

A. Guide to RAM/VM

1. The Resocurce Allocation Problem

The RAM/VM program is designed to assist the decision-
maker in allocating resources to alternatives in cases where
more alternatives exist than can be supported by available

11

resources. Although the problem is quite general, we can

describe it in terms of an R&D project selection problem.
Each element of the R&D program can be selected at no more
than one of a number of predefined, alternative funding
levels. Each funding level consumes a different amount of
resources (dollars) in each of several budget periods and
results in outputs that differ in the benefits received.
Benefits reflect the contribution of each alternative to
each objective. Benefits measured by the user are used as
inputs to this computer program. The objectives of the re-
source allocation process must be organized into one or more
prioritized groups. Within a group, a relative weighting of
the objectives may be specified, for example, in order of
their relative importance. Finally, resource constraints
must be specified for as many budget periods as exist, and
the cost of each alternative in each period must be provided.

RAM/VM uses a ranking technique in Phase 1 to obtain an
initial feasible solution and then in Phase 2, tries to im-
prove this initial solution through a series of exchange
operations.* This approach is based on Petersen's Capital
Budgeting Heuristic Algorithm.2 The program attempts to
maximize (with no upper limit) the total achievement value
of all objectives at each priority level. The Priority 1
objectives are maximized first, and the objectives associated
with each successive priority level (if any exist) are then
maximized if the achievement of preceding higher level ob-
jectives is not degraded. To maximize the objectives, RAM/VM

2Petersen, Clifford C., "A Capital Budgeting Heuristic
Algorithm Using Exchange Operations," AIIE Transactions,
VI, 2, June 1974.

*See Section II.B for description of ranking and exchange
techniques.

12

selects no more than one alternative from each group (mutually
exclusive) such that the total measurable benefit (at each
priority level) is maximized (subject to the availability of
required resources). The alternatives are assigned a value

of 1 if included in the solution, 0 if not.

2. Data Input

RAM/VM uses formatted READ statements to input data from
a file assigned to logical unit 10. Table 1 identifies the
required input to RAM/VM and the corresponding data formats.
A brief description of each data item is also included.

Note the flag, IGS. This flag is set equal to 1 if
some alternative group exists that must be represented in the
solution. For the mutually exclusive alternative groups,
which require that no more than one alternative be selected,
the IGS set equal to 1 will require that exactly one alter-
native be selected from each alternative group contained
in the Priority 1 objective. This Priority 1 objective
must be of the form: Max:mize

i Ai X

where Ai is set equal to 1 for alternative i if its associated

alternative group must be included in the solution, and Ai is
set equal to zero otherwise. Additional comments on the use

of IGS are provided in Section III.A.4.

3. Solution Output

The output from RAM/VM is stored in a file assigned
to logical unit 8 in a seguential format. “FILEOUT" is the
name assigned to the output file by RAM/VM as currently
implemented on Multics.

13

e e e _)

(a+1-b C{l, L) 10F8.0

b+1)-¢ IGR(I) 1615

| (c+1)-d ILEV(I) 1615

(d+1)-e B(L) 10F8.0
(e+1)—f All) 10F8.0

*(f+1)—g | RHS() 10F8.0

objective J

The cast of variable | in
budget period |

The alternative group that
contains variable |

The funding level within IGR(1)
represented by variable |

The budget upper bound for period |

The contribution of variable | to
the achievement of an objective

The desired achievement value
of each goal or objective

TABLE 1
INPUT DATA FORMATS FOR RAM/VM AND RAM/GP
Card Data Format Description Comments
1 NVAR 15 The number of 0-1 variables
(tota! of all alternatives)
NG 1 15 The number of objectives
NP 15 The number of priority levels
NPEF 15 The number of budget periods
NGR 15 The number of mutually exclusive
alternative groups
IGS 15 A fiag, when set to 1 indicates the
presence of alternative groups that
must be funded at a nonzero level
2-a W) 15 The weighting factor associated Input as (W(J), PR(J), J =1, NG)
with objective J
PR(J) 15 The priority level that includes

For each budget period |, input
as (CU, 1}, 1 =1, NVAR)

Input as (IGR(i), | =1, NVAR)

Input as (ILEV(I), | =1, NVAR)

Input as (B(L), | = 1, NPER)

For each objective, input as
(A(l), 1 =1, NVAR)

input as (RHS(J), J = 1, NG}

*RHS(J) is input for RAM/GP only.

14

i

(1)
(2)
(3)
(4)
(5)
(6)
(7)

"FILEOUT" provides the initial solution obtained by
RAM/VM under Phase 1 and the final solution obtained under
Phase 2. The results shown are the variables contained in
the solution and the correspondirg alternative group number
(mutually exclusive group) and funding alternative number
(alternative within the associated group), the achievement
vector for each priority level, and the slack (or unused

resources) remaining in each period.

4. Sample Problem

Table 2 is a sample data file for RAM/VM, which is set
up in the format identified in Table 1. Line (1) sets the
parameters for the problem. There are nine 0-1 variables
(total number of alternative groups) (NVAR=9), two objectives
(NG=2), one priority level (NP=1), three time periods (NPER=3)
and three alternative groups (NGR=3). The flag, IGS, is set
to zero (IGS=0), indicating that for this problem no alter-
native groups need be represented in the solution.

TABLE 2
SAMPLE DATA FILE FOR RAM/VM (IGS = 0)

9 2 | 3 > D

1 1 2 !
32.000 2.000 50.777 17,7900 98.0230 0.07°0 38.00" 8Y.000
95,07 25.1700 33.777 35.7°00 72.000 48.070 v4.000 92,000

7.000 92.000 31.37) 84.000 0.7 9Y0.070 26.000 11,00
| | 2 2 2 2 3 3 3
1 2 1 2 3 4 ! 2 3

(8) 200.000 190.000 2)0.)7)

(9)

69.070 13.000 32.797 2.N00 30,220 10.07 98.00N JL.NON

(10 8Y.000 71.000 ¥6.07) 25.070 33.070 35.000 72.000 42,.07)

71,970
P4, NN
47,0™)

34,000
va ., 0N

Line (2) shows that each objective is at the first
priority level (PR(J)=1l), J=1,2); however, the second objec-
tive is shown to be twice as important as the first. There-
fore, the weighting factors are 1 for the first objective
(W(l)=1) and 2 for the second objective (W(2)=2).

Lines (3) thrcugh (5) identify the quantity of resources
required by each alternative during each time period.

Lines (6) and (7) identify which variables are associated
with each alternative group. In this example, there are
three such groups, the first group having two alternatives,
the second group having four alternatives, and the third

group having three alternatives.

Line (8) identifies the total resources available during

each of the three time periods.

Lines (9) and (10) identify the contribution of each
alternative to the achievement of the two objectives.

Mathematically, the sample problem is set up as follows:

Maximize
7= 1 (69X +13X +32X +2X +30X+10X +98X +0X +38X)
1 2 3 b 5 6 7 B 9

+ 2 (89X +71X 496X +25X +33X +35X +72X +48X +94X)
1 2 3 4 5 [7 8 9

{where Z is the objective function, and the coefficients re-
present the contribution of each variable (alternative) to

the achievement of each objective.)

Subject to the following resource constraints:

32X + 2X + 30X + 10X + 98X + OX + 38X + 89X + 71X £ 200.0
1 2 3 L g [7 8 9

96X + 25X + 33X + 35X + 72X + 48X + 94X + 92X + 96X < 190.0
1 2 3 4 1) [7 8 9

7X + 92X + 31X + BAX + OX + 90X + 26X + 11X + 47X < 200.0
b 2 3 bW < [7 8 9

16

Baide o dal iSO .

-

(where each equation represents one time period, the coef-
ficients identify the resources required by each variable
(alternative), and the righthand side provides the maximum
quantity of the resources available in each time period.)

The constraint:
X1 = {0,1} i=1,9

requires that an alternative either be selected or rejected.

The constraints:

x1+ X2 <1 (Alternative Group 1)
X3+ X“+ X5+ X6 <1 (Alternative Group 2)
x7+ xe+ X9 <1 (Alternative Group 3)

require no more than one alternative to be selected from
each alternative group. It is possible that no alterna-
tives will be selected from a given group.

The solution to this problem is shown in Table 3. Note
the improvement in the achievement vector in Phase 2 over
that in Phase 1. RAM/VM found an initial feasible solution
and then, through a two-for-one exchange, improved the value
of the objective function. The exchange replaced variable
index 1 with variable indices 2 and 7. The value of the
achievement vector in the final solution is 621.0. This is
the value of 2 with Xz, xs, and X7 (the alternatives
associated with the variable indices 2, 3, and 7) set equal
to 1 and all other variables set to 0; this value represents
the optimal (or near optimal) achievement with the set of
constraints. These variable indices (2, 3, and 7) represent
Alternative Group 1 (Alternative 2), Alternative Group 2

17

it o

varianle inaex
3
|

ainievement vector
priority |

variadle invex

3
1

acnjevenant vector
ariority |

TABLE 3
SAMPLE OUTPUT FROM RAM/VM

multiple objective resource allocstion solytion system output
output from phase |

the following variables are {n the solution
alternative group number funding alternative number
2 1
1 }
471,0000

multiple ob ject ive resource allocatfon solution system output :
output from phase 2

the following variables sre in the solution ;
alternative grouw number funding alternative number i
| 2
2 |
3 |
621 .0000
multiple objective rasource allocatinn solution system output
slack remaining in period 1 130. 000000
slack rensining in perjod 29 38. 070000

slack remaining in perloa 3 51, 00007

gt o - ‘—""-———'———————————-1

(Alternative 1) and Alternative Group 3 (Alternative 1),
With problems of more than one priority level, the achieve-
ment vector will be provided for each associated priority
level. The output also identifies the slack, or gquantity of

unused resources, remaining in each time period.

If, as an additional constraint, one of the alternatives
in the third alternative group had to be selected, IGS would 1
be set equal to 1, and an additional objective would be added.
This objective would be at the Priority 1 level and would !
be:
Maximize: lX7 + lXa + 1X9.

The other objectives would then be treated as Priority 2

objectives, and the objective function Z would be: ’
Maximize
_ ;4 +0X +1IX +1IX +1X);
z = [(ox) + 00X+ OX_+ OX + OX] , . .

(1(69x + 13X + 32X + 2X + 30X + 10X + 98X + OX + 38X)
1 2 3) s [? 8 g

+ 2(B9X + 71X + 96X + 25X + 33X + 35X + 72X _+ 48X + 94X 0]
1 2 3 L 5] 7 8 9

Table 4 shows how the data file would be set up for such a
problem. Table 4 represents the same problems as those in
Table 2, except it includes the requirement to select one of
the alternatives from the third alternative group.

5. Limitations Due to Size of Problem

The array dimensions restrict the problem size to 200
goals, 3 priority levels, 10 budget periods, 475 alternatives,
and 150 alternative groups. The problem size can be in-
creased through appropriate redimensioning of the arrays,
subject only to time and system limitations.

19

Y

1
32.000
95.00)
7.0)2

1

i
207,000
.00
67 .0
8Y. 0070

6.

during a test program.

goals, one priority level, and four budget periods,

2 2
! 1
2.2700
25.000)
92.C02
) 2
2 |
190,000
J.000
13.00D
71.000

TABLE 4

SAMPLE DATA FILE FOR RAM/VM (IGS = 1)

3

2
30.302
23,00
Sled)

2

2
270,30

0.)n
32.)))
¥AH.ND

3
2

2
3

1

2
10,023
35,27

34,1720
2

4

2.0
2.1700
25.N00

0.770
302.700
33.100

Computational Experience

We ran a number of randomly generated problems cn RAM/VM

0,070
48,070
Y0.NI0D

0.170
10.7D0
35.070

38.0M
94,000
26.0M

t .000
98.000
72 .000

87,000
92.7970
11.070

1.0
J.000
473 .00)

All the problems generated had four
Table 5

provides a summary of some of the test program results.*

B.

Guide to RAM/GP

RAM/GP is a computer code similar to RAM/VM in that it
also solves the multidimensional, multiple-objective pack-

ing problem and uses the same ranking technigque and ex-
change heuristic.

of the goal programming methodology for solving the multiple

objective problem.

RAM/GP, however, embodies more aspects

RAM/VM maximizes the achievement value

of all objectives for each priority level; whereas RAM/GP

minimizes the deviation from set objectives or goals for

each priority level,

*See Volume 4 for additional test data.

20

71,97
94,02
47,0™

1.070
32,070
94,070

TABLE S
SUMMARY OF TEST PROGRAM RESULTS

Number of Mean Percentage of Mean CPU Time
Variables Optimum* (CPU secs)
21 97.3 1.44
40 97.7 2.2
60 -t 3.75
75 -t 6.71
99 -t 3.10

*We based percentage of optimum on RAM/VM solutions that were
within a percentage of an upper bound on the optimal solution.
The RAM/VM solution may, therefore, be closer to the true optimal.

1"Limitations of the test program restricted the determination of the
upper bound on the optimal solution for problems with more than
50 variables.

Data input for RAM/GP differs from that for RAM/VM only
in that the desired achievement value for each objective
is included in the data input. This value is shown in
Table 1 as RHS(J), the last line of data to be input. If
the objectives (RHS(J)) are set high enough (so that they
cannot be attained), RAM/GP will arrive at the same solution
as that of RAM/VM. RAM/GP does not give any credit for
surpassing goals; therefore, the value of the achievement
vector as provided by the output will never exceed the sum
of all goals,

NG
(L RHS (J)),
J=1

even though the set goal for some (or all) objectives may
be exceeded.

21

e e sror———

The information provided by the output from RAM/GP is
the same as that provided by RAM/VM output. The solutions
obtained from RAM/GP during the test program compared
favorably with those of RAM/VM and should be within 2 to 3
percent of optimum for problems with less than 50 variables.
RAM/GP does reguire more CPU time to arrive at the solution
than does RAM/VM.

22

IV. COMPUTER CODES
This chapter contains the computer program listings for

RAM/GP and RAM/VM.

A. RAM/GP

Crxxxxerxxtxsxxtxxxxxxxxx PROGRAM RAM/GP s rx s s X s e s Xrx s XX XS XXX X XXX
xx»2SUBROUTINE FUNCTIONS
1 FEAS--CHECKS AN EXCHANGE OFERATION FOR BUDGET FEASIBILITY.
2 COMPARE--CHECKS AN OPERATION FOR PROFITABILITY.
3. RERANK--~REORDERS THE PROJECTS IN THE SETS JS AND NS AFTER

EACH EXCHANGE. (JS 1S RAMKED IN ASCENDING ORDER OF PROFIT,
NS IN DESCENDING ORDER)

4. FITBACK--USES UP BUDGET SLACK BY ADDING ANY FEASIBLE PROJECTS
(REGARDLESS OF RELATIVE PROFIT) TO JS.

EXEE BT MA XX EE XA XA KRR KA XA XA XK KA E R EE XK AR AKX RN AN AR KX " XXX XKL X
xxx% | NPUT VARIABIES

NVAR--THE NUMBER OF 0-1 VARIABLES.

NG--THE NUMBER OF OBJECTIVES.

NP--THE NUMEBER OF PRIORITY LEVELS.

NPER--THE NUMBER OF BUDGET PERIODS.

NGR--THE NUMBER OF MUTUALLY EXCLUSIVE GROUPS (ALTERNATIVE GROUPS).
W(J)--THE WEIGHTING FACTOR ASSOCIATED WITH CEJECTIVE J.

PR(J)--THE PRIORITY LEVEL WHICH INCLUDES COBJECTIVE J.

IGR([)--THE ALTERNATIVE GROUP WHICH CONTAINS VARIABLE 1.

A(1)--THE CONTRIBUTION OF VARIABLE | TO THE ACHIEVEMENT OF

AN OBJECTIVE.

C(1,L)--THE COST OF VARIABLE | IN BUDGET PERIOD L.

B(L)--THE BUDGET UPPER BOUND FOR PERIOD L.

TLEV(1)--THE FUNDING LEVEL WITHIN IGR(1) REPRESENTED BY VARIABLF 1.
16S~--1F SET TO 1, INDICATES THE PRESENCE OF ALTERNATIVE GROUFC
WHICH MUST BE FUNDED AT SOME NON-ZERD LEVEL.

QN=0 VLENONDWLON =

QOO0 OOOOOOODONOOOOOOOOOOOOO0
- s

!ll’ltlt!*!l!!tlt!!!ll!l’ill!ll!!t!t!!ltllt!!!*!l’ttl’!'l’ll‘tt!lllllllllxrlll)x 3

23

. bt AT T ——

- — = <

¥

Crxxx» INTERNAL VARIABLES

OO0 OOOOOOOOOODO

1. R(1)--THE PROPORTION OF AVAILABLE FUNDS REQUIRED BY
VARIABLE 1,AVERAGED OVER ALL BUDGET PERIODS.

2. AH(I ,K)--FOR EACH VARIABLE 1,THIS 1S AN NP-DIMENSIONAL VECTOR,
WHOSE KTH COMPONENT 1S A WEIGHTED SUM OF CONTRIBUTIONS OF VARIABLS |
TO THE OBJECTIVES AT PRIORITY LEVEL K.

3. INIF--A FLAG WHICH COMMUNICATES THE CJURRENT STAGE TO THE
SUBROUTINE 'COMPARE"'.
q. INC(1)--HAS A VALUE OF 1 IF VARIABLE | IS IN THE SOLUTION;
0 OTHERWISE.
5. IGR(M)--HAS A VALUE OF 1 |F THE GROUP M (S REPRESENTED IN
THE SOLUTION; O OTHERWISE.
6. JS(M)--TAFES ON THE INDEX NUMBER OF THE MTH VARIABLE
[N THE SOLUTION
7. JL--THE NUMBER OF VARIABLES CURRENTLY IN THE SOLUTICGN SET;JS(M).
8. NS(M)--TAKES ON THE INDEX NUMBER OF THE MTH VARIABLE NOT IN THE
SOLUTION.
9. LL--THE NUMBER OF VARIABLES CURRENTLY OUT OF THE SOLUTION.
10 SLACK(L})--A VECTOR WHICH INDICATES UNSPENT FUNDS IN
EACH BUDGET PERIOD FOR THE CURRENT SO_UTION.
11. NUMF--18 A FLAG WHICH INDICATES THE TYPE OF EXCHANGE
TO PERFORM.
12. PROF(K)--1S A NP-DIMENSIONAL VECTOR WHOSE KTH COMPONENT

1S THE PROFIT GAINED IN THE KTH PRIORITY LEVEL SO FAR IN
THE CURRENT EXCHANGE CYCLE.
13. PROFN(K)--1S A NP-DIMENSIONAL VECTOR WHOSE KTH COMPONENT IS THE
PROFIT IN THE KTH PRIORITY LEVEL FOR THE EXCHANGE
UNDER CONSIDERATION.
14. IFLAG--TAKES ON A VALUE OF 1 IF AN EXCHANGE 1S PROFITABLE;
O OTHERW)SE.
15. JFLAG--TAKES ON A VALUE OF 1 IF AN EXCHANGE 1S FEASIBLE; O OTHERWISE
16. CAND(I)--TAKES ON THE INDEX NUMBER OF THI ITH VARIAELE
IN THE FITBACK SET.

(2333327222232 22 222222222t it i ittt s Rt iRt Rt b Rt Rt Rt

CxxxsCURRENT DIMENSION STATUS

OO OOHHODOHOOOOOOOOHOOOOO

1. NUMBER OF GOALS: 200
2. NUMBER OF PRIOCRITY LEVELS: 3
3. NUMBER OF BUDGET PERIODS :@ 10
4. NUMBER OF 0-1 VARIABLES(ALTERNATIVES): 475
5. NUMBER OF ALTERNATIVE GROUPS: 150
AT AN R R KR K N A A A S R N KK A N E AR R A X KA KRS R KRR X KA KA X AT RN O &
RAM/GP WAS DEVELOPED AND WRITTEN AT
ANALYTIC SERVICES, INC
(TACTICAL DIVISION)
400 ARMY -NAVY DRIVE
ARLINGTON, VIRGINIA 22202

(703) 979-0700
AV 225-5640

Illlll!'l’l!ll!lllllllllllllllllllll-ll!lllllllllll!tllltllllllllll‘!ll'lli

24

DIMENSION R(475)

INTEGER PR(475),W(473)

INTEGER OV, HV,0V1,0Vv2

COMMON /COMM1/ SL(10),C(200,10),NPER, JFLAG, SLACK(10)
COMMON /COMM2/ JS(S0),JL

COMMON /COMM3/ AH(200,3),PROF(3), IFLAG,NP,PROFN(3)
COMMON /COMM4/ IGN(S0), INC(200),CAND(S50),NGR, NVAR
&,LK,ILEV(200),ACH(3)

COMMON /COMMS/ NUMF,OV,JV,KV,LV, MV, HV,I10UT1, I0UT2
& ,10UT3, IN1,IN2, IN3,NL,NM,NH, IT,JJ, KK
&,1A,1B,IC,1AA,I1BB, ICC

COMMON /COMMS/ NS(200),LL, IGR(200)

COMMON /COMM7/ INIF

COMMON /COMM8/ B(10)

COMMON /COMMS/ A(200,50),RHS(50),PER(S0) ,EXT(50),JW(200),
&NG, JPR(200)

READ(10,501) NVAR,NG,NP,NPER, NGR

READ(10,502) (JW(J),IPR(J),J =1,NG)

DO 737 L=1,NPER

737 READ(10,%503) (C(1,L),1=1,NVAR)
READ(10,5%502) (IGRCI),1=1,NVAR)
READ(10,3502) (ILEV(I),I = 1,NVAR)

READ(10,%503) (B(L),L=1,NPER)
DO 714 J=1,NG
714 READ(10,503) (A(1,J),1=1,NVAR)
READ(10,%503) (RHS(J),J=1,NG)
1S1z=1
501 FORMAT(1615)
502 FORMAT(1615)
503 FORMAT(10F8.3)
996 FORMAT(' ',2515)
€ 1. CALCULATE R(1)
NVAR=NVAR+1
NGR=NGR+1
DO 904 K=1,NG
ACNVAR,K) =0,
904 CONTINUE
DO 905 K=1,NP
AH{NVAR,K)-0,
905 CONTINUE
IGR(NVAR} =NGR
ILEVINVAR) =1
DO 906 L=1,NPER
C(NVAR,L1:999999.
906 CONTINUE
DO 1 I = 1,NVAR
R(1120.0
DO 2 L = 1,NPER
R(II=RCII+(C(I,L)/BIL))
2 CONTINUE
R(1) = R(1)/NPER
1 CONT I NUE
C 2. CALCULATE AH(I,K)
DO 4 K=1,NP
06 4 1 = 1,NVAR
AH(1,K) = 0.0
4 CONTINUE
003 J = 1,NG
Ksl1PR(J)
DO S | = 1,NVAR
AA = (AT, JIRJW(J)I/RCT)
AH(D,K) = AH(I,K) + AA
s CONTINUE
3 CONTINUE
C DETERMINE INITIAL SOLUTION

25

C 1. GET MAX(A/R)I FOR EACH GROUP. o
, INIF = 1 L
| LL = 0
é DO 6 M = 1,NGR
; MAX=0
; DO 7 I=1,NVAR
’ IF(IGR(I) .NE. M) GO TO 7
INC(1)=0
Iv=1
IF(MAX.EQ.0) GO TO 101 ;
CALL COMPARE (IV,OV, INIF)
IF(INC(I1.EQ.0) GO TO 102 P
LL=LL+1 :
NS(LL) =0V
ov = | [‘
60 TO 7 D
102 LL = LL + :
NS(LL) = 1
60 TO 7
101 ov=}
INCCI)=1
MAX=1 ‘
7 CONTINUE
JS(M)=0V
6 CONT ! NUE (
INIF=0 :
CxxxsgxxRANK (JS)I®XXxXxXXXXXXXX XXX XXX ’
DO 8 M=2,NGR
N=M
103 MO=JIS(N-1) .
MN=JS(N) !
CALL. COMPARE (MN,MO, INIF)
IF(IFLAG .EQ. 0) GO TO 8
INTER = JS(N-1)
JS(N-1)=JS(N)
JS(N)=INTER
N=N-1
IF(N-1) 8,8,103
8 CONTINUE
JL=NGR
CxxxCHECK (JS) FOR FEASIBILITY AND DELETE BOTTOM ENTRY IF NOT FEASIBLE
104 DO 8 L = 1,NFER
cc=0.0
DO 10 M = 1t,JL
1=JS(M)
cC=CcCc+C(1,L)
IF(CC.GT.B(L)) GO TO 105
10 CONTINUE
SLACK (L) =B(L)-CC
9 CONT I NUE
80 TO 106
105 11 = JS(JL) ’
INCCI1)=0 :
JL=JIL-1
LL=LL#+?
NS(LL)=1]
80 TO 104
106 DO 311 K = | ,NP
DO 11 I = 1,NVAR
AHCI,K)2AH(1 ,K)*R(1])
11 CONTINUE
DO 769 1=1,LL
JENS(1)

PSP —

M e i o e L

769

797
500

722
116

12

102

107

108

30

14

CONTINUE

CALL RERANK

DO 797 1=1,LL
JENS(1)

CONT I NUE

CONT 1 NUE

KKFL=0

CALL FITBACK(KKFL)
10FL=1

CALL OUTPUT(IOFL)

CxxxssxxSECTION 2 FIRST EXCHANGEx»x*xxxxx

DO 722 1=1,LL
J=NS(1)
CONTINLE
CONT I NUE
DO 12 K =1,
PROF (K)=0.0
CONTINUE
NV2=NVAR+2
INIF=3

DO 13 NL=%,LL

NH=ML +1

JIFL=1

IF(NH.GT.LL) GO TO 13

HV = NS(NH)

LV=NS(NL)

IF(IGR(HV) .EQ. IGR(LV)) GO TO 107

60 TO 108

NH=NH+1

60 TO 109

CONT INUE

DO 15 L=1,NPER

C(NV2,L)=C(HV,L)Y+C(LV, L)

CONTINUE

DO 16 11=1,JL

Ov=J3s(11]}

IS=1GR(LV)

IX=21GR(HY)

IF(IGN({1S).NE.O.AND. IGR(LV).NE.IGR(OV)) GO TO 16
DO 30 K=1,NP

AH(MV2,K)=0.

AH(LV,K)=0.

CONTINUE

DO 14 J=1,NG

RI1=zA(LV,J)+A(KHV, J)

D1=A(LY,)

RNEED=EXT(J)+A(OV,)

IF(RNEED.LT.O.)RNEED=0.

R2zAMIN1(R1,RNEED)

D2=AMIN1 (D1, RNEED)

LY=IPR(J)

AH(NVZ,LY)=AH(NVZ,LY) +(R2xJW(J))
AHILV,LY)=AH(LV,LY)+(D2=xJW(J))

CONTINUE
IFCIGN(IX) . NE.O.AND. IGR(HV) NE. IGR(OV)) GO TO 110
NV=HV2

CALL COMPARE(NV,OV, INIF) -

[IF(IFLAG.EQ.0) GO TO 111

CALL FEAS(OV,NV)

IF(JFLAG.EG.0) GO TO 110

NUMF =2

60 70 112

NP

113
16
13

18

396

{F(JJFL.GT.1) GO TO 16
NVELV
1F(NV.EQ.LNM.AND.OV.EQ.LNN) GO TO 16
CALL COMPARE (NV,OV, INIF)
LNM=NV

LNN=0OV

IF(IFLAG.EQ.0) GG TO 16
CALL FEAS(OV,NV)
IF(JFLAG .EQ. 0) GO TO 16
NUMF =1

60 TO 112

NH=NH+1

JJFL=2

Go TO 109

DO 17 K = 1,NP

PROF (K) 2PROFN(K)
CONTINUE

ta =11

1OUT=0V

INT = LV

{AA = NL

{F(NUMF .NE.2) GO TO 113
IN2 = HV

188 = NH

GO TO 111

IN2 = O

CONT I NUE

G0 TO 107

CONT I NUE

DO 18 K=1,NP

IF (PROF(K).GT.0.0) GO TO 114
CONT I NUE _

KKFL = 1

CALL F1TBACK (KKFL)
10FL=2

CALL OUTPUT(IOFL)

CALL RERANK

Go Jo 118

INCC10UT) =0

INCCINT) =1
INTER3=JS(IA)

JSCIA) =NS(1AA)

N=JS(1A)

1J=1GR(N)
NS(IAA) = INTER3
{P=1GR(INTER3)
IGNCIP)=0

IGNCTJ) =1t

{F(IN2.EQ.0) GO TO 115
LLL=0

LL=tLL-1

DO 396 1=1,LL

J=l+1

IF(NS(1).EG.IN2) LLL=}
{F(LLL.EQ.1) NS(1)=NS(J)
CONTNUE

INCLIN2) =1}

JLeJdL+1

JS(ILI=IN2

LX=1GR(IN2)

IGN(LX) =1

115 CALL RERANK
L DO 28 L=1,NPER
cCc=0.0
po 2e M=1,JL
1=JS(M)
cC=CcC+C(1,L)
29 CONTINUE -
SLACK(L)=B(L)-CC T
28 CONTI NUE
60 1O 116
118 CONTINUE . i
810 (OFL=3
CALL OUTPUT(IOFL)
CLOSE(8) |
CLOSE(10) ‘
STOP
END
ClxttiSUBQOUTINES:::-:-t-x:-x:x:::tx-xxxx:x-x:
SUBROUTINE FEAS(LOV,NV)
COMMON /COMM1/ SL(lO),C(ZOO,10),NPER,JFLAG,SLACK(10)
COMMON /COMM7/ INIF
DO 1 L=1,NPER .
SL(L) = SLACKI(L)
SL(L)=SLIL)+C(LOV,L)Y-C(NV, L)
SLF=SL(L)+. 0005
IF(SLF) 10,1,1
J 1 CONTINUE
H JFLAG=1
60 TO 11
10 JFLAG=0
1M RETURN
END
CraxxxsrxRERANK (JS) AND (NS)xxxxxxxxxxXxuxxx
SUBROUTINE RERANK
COMMON /COMM2/ JS(50),JL
COMHMON /COMM7/ INIF
COMMON /COMM3/ AH(200,3),PROF(3),lFLAG,NP,PROFN(G)
COMMON /COMM4/ IGN(50), INC(200),CAND(50),NGR, NVAR
8.LK,1LEV(200),ACH!3)
COMMON /COMMG/ NS (200),LL, IGR(200)
COMMON /COMM9Y/ A(200,50),RHS(50),PER(50),EXT(50),JN(200),
&NG, 1PR(200)
INIF = O
Do 1 J=1,NG
PER(J)=0.
1 CONTINUE
DO 2 10=1,JL
D0 2 J=1,NG
I=JS(1Q)
PERCJ)I=PER(J)+AC(i, J)
2 CONTINUE
DO 3 J=1,NG
EXTC(J)zRHS(J)-PER(J)
3 CONTINUE
DO 4 I=1,JL
DO 4 K=1,NP
LZ=JS(1)
AH(LZ,K)=0.
4 CONTINUE
QL=0.
Do 5 1a=1,JL
DO S J=1,NG
I1=JS(1Q)

29

RV=A(], JY+EXT(J)

IF(RV.LT.0.) RV=0, :

APS=A(1,J)

RSV=AMIN1(APS,RV)

K=IPR(J) |

AH(1,K)=AH(1,K)+RSV*JW(J) |
5 CONT I NUE |

IF(IL.LT.2) GO TO 71 '
DO 70 M=2,JL v
N=M {
700 MO=JIS(N-1)
MN=JS(N)
CALL COMPARE (MN,MO, INIF) o
IF(JIFLAG.EG.1) GO TO 70 :
INTER=JS(N-1)
JS(N-1)=JS(N)
JS(N)=INTER i
N=N-1
IF(N-1) 70,70,700
70 CONTINUE
71 CONTINUE
' Crxxxasyrr X s stx xR vk kK (NS) s XXX XX XXX XX ANKXX
b 57 M = 2,LL
N=M
604 MO=NS(N-1)
MN=NS(N)
CALL COMPARE(MN,MO, INIF)
IF(IFLAG.EQ.0) GO TO 57
INTER=NS(NMN-1)
NS(MN-1) = NS(N)
NS (M) = INTER
N=N-1 .
IF(M-1) 57,577,604
87 CONTINUE
DO 100 1=1,JL
11=J38(1)
100 CONTINUE
RETURN
END
CrxrasssxxXxsEXECUTE FITBACKY ¥ XXX XXX XXX XXX X XX
SUBROUTINE FITBACK (KKFL)
COMMON /COMM1/ SL(10),C(200,10),NPER, JFLAG, SLACK(10) ’
COMNMON /COMM2/ JS(50),JL
COMMON /COMM4/ IGN(S0), INC(200),CAND(50),NGR, NVAR
&,LK,ILEV(200),ACH(3)
COMMON /COMM&6/ NS(200),LL, IGR(200)
COMMON /COMM7/ INIF
DO 15 L=1,NPER
SL(L)=SLACK(L) 5
15 CONTINUE 3
DO 11 M=1,NGR
[GN(M)=0
1M CONT!NUE ,1
DG 10 1=1,JL 1
N=JS(1)
M=IBR(N)
IGN(M) =1
10 CONTINUE
LK=0
DO 12 I=1t,LL
11=NS (1)

13

14
12

18
17

® b

12

18

20
10

M=1GR(11)

IFCIGN(MI.NE.O) GO TO 12

DO 13 L=1, NPER
IF(CCI1,L) . GT.SL(L)Y) GO TO 12
CONTINUE

LK=LK+1

CAND(LK)=1]

DO 14 L=1,NPER
SLL)Y=SLILY-C(}},L)

CONTINUE

CONTINUE

IF(KKFLL .EQ. O .6R. LK .EQ. 0) GO TO 17
DO 18 1 = 1,LK

JJ = CAND(1])

INCCJJ)Y =21
JL = JL + 1
LL = LL-1

JS(IL) = JJ

JK = IGR(JJ)

IGN(JK) =1

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE COMPARE(IN,I10,INIF)
COMNDN /COMM3/ AH(200,3),PROF(3), IFLAG, NP, PROFN(3)
COMION /COMM4A/ IGN(S0), INC(200),CAND(S0),NGR, NVAR
,LK,ILEV(200), ACH(3)

COMMON /COMM2/ JS(50),JL
IFCINIF .NE. 1) GO TO 1)

DO 1 K = 1,NP

IF(AHCIN,K) - AHLID,K)) 2,1,3
CONTINUE

60 TO 10

INCCIN) =

INC(IQ) = O

60 10 10

IFCINIF _NE. 0) GO TO 12

DO 4 K = 1,NP

{IF(AHCIN,K) - AH(IO,K)) 5,4,6
CONTINUE

IFLAG = O

80 TO 10

IFLAG = 1}

GO T0 10

IFCINIF _NE. 3) GO TO 10

DO 7 K = 1,NP

PROFN(K) = AH(IN,K)-AH(106,K)
CONTINUE

DO 8 K =) ,NP
{F(PROFN(K)-PROF(K)) 18,8,20
CONTINUE

IFLAG = O

G0 TO0 10

(FLAG = 1

RETURM

END

SUBROUTINE OUTPUT(IOFL)
COMMON /COMMA4~/ [GN(30), INC(200),CANDI(S0),NGR, NVAR
8,.LK,ILEV(200),ACH(3)

[]

973

398

400

401

25

403

419
S0
40S

794

COMMON /COMM2/ JS(50),JL

COMMON /COMM3/ AH(200,3),PROF(3), IFLAG, NP, PROFN(3)
COMMON /COMM6E/ NS(200),LL, IGR(200)

COMMON /COMM1/ SL(10),C(200,10),NPER, JFLAG,SLACK(10)
COMMON /COMME/ B(10)

COMMON /COMM9/ A(200,50),RHS(30),PER(50) ,EXT(50),JW(200).

&NG, 1PR(200)
IF(IOFL.GT.1) GO TO 973

OPEN(8, FORM="FORMATTED" , ACCESS="SEQUENTIAL", MODE= “OUT",
&CARFIAGE=.TRUE.,FILE="FILEOUT")
WRITE(8, 600)

DO 398 K=1,NP

ACH(K)=0.0

IF(1O0FL . NE.1) GO TO 25
WRITE(8,601) 16FL

WRITE(8,602)

WRITE(8, 603)

DO 400 1:z1,JL

11=J8(1)

WRITE(8,604) JS(I),IGRCII), ILEV(II)
CONT I NUE

DO 418 J=1,NG

EE=C-1.)2EXT(J)

EJ=0.

€1=AMAX1 (EE,EJ)

P2:PER(J1-EI

L=IPR(J)

ACHCL) =ACH(L) +P2xJW(J)
IF(LK.EG.0) GO TO 777
WRITE (8, 605)

WRITE(8, 603)

DG 401 1=1,LK

{1=CAND(1)

WRITE(8,604) 11,1GR(I1),ILEV(I])
DO 401 K=1,NP

ACH(K) =ACH(K) +AH(11,K)

CONTINUE

6o TO 777

IF(1OFL.NE.2) GO TO SO
WRITE(8,601) I10OFL

WRITE(8, 602)

WRITE(8, 603)

DO 403 I=1,JL

1123s(1)

WRITE(8,604) JS(1),1GR(11), ILEV(II)
CONTINUE

DO 419 J=1,NG

EE=C-1.)2EXT(J)

€J=0.

El=AMAX1(EE,EJ)

P2:=PER(J}-E|

L=IPR(J)

ACHCL) =ACH(L) +P2%JW(J)

60 TO 777

DO 405 K=1i,NP

{F(PROF(K).GT.0.) GO TO 794
CONT I NUE

60 TO 795

CONT I NUE

WRITE(8,601) 10FL

WRITE (8, 602)

WRITE(8,603)

DO 406 121, JL

11238¢1)

IF(JS(1).EQ.0) GO TO 406
WRITE(8,604) JS(1),IGR(11),ILEV(II)

32

407
406
777

402
795

411
809

600

601
602
603

604
605
606
607
609

DO 407 K=1,NP

ACH(K) =ACH(K)+AH(11],K)
CONTINUE

CONTINUE

WRITE(8,606)

DO 402 K=1,NP
WRITE(8,607) K,ACH(K)
CONTINUE

IF(IOFL.NE.3) GO TO 909
DO 411 L=1,NPER

cC=0.0

DO 417 M=1,JL
1=JS(M)
cC=CC+C(),L)
CONTINUE

SLACK(L)=B(L)-CC

WRITE(8,609) L,SLACK(L)

CONTINUE

CONTINUE

RETURN

FORMAT('1',35X, '"MULTIPLE OBJECTIVE RESOURCE ALLOCATION
& SOLUTION SYSTEM OUTPUT')

FORKAT("1',55X, 'OUTPUT FROM PHASE ', I11)

FORMAT('0',45X, 'THE FOLLOWING VARIABLES ARE IN THE SOLUTION')
FORMAT('0"', 17X, '"VARIABLE INDEX', 17X, 'ALTERNATIVE GROUP NUMBER',6 17X,
&°FUNDING ALTERNATIVE NUMBER') ’
FORMAT(*® ',23X,13,30X,13,38x,12)

FORMAT('0’ ,59X, 'FITBACK VARIABLES')
FORMAT('0’, 15X, "ACHIEVEMENT VECTOR')

FORMAT (' ' ,20X, 'PRIORITY 'I1,5X,F10.4)

FORMAT('0',40X, 'SLACK REMAINING IN PERIOD ' ,12,':’',8X,F10.6)

END

B. RAM/VM

CesxxappxxXxsxxtxxxxxxxxx PROGRAM RAM/VM XX XXX XXX XAXKX XXX XX E XXX ARX KX X X
xx3sSUBROUTINE FUNCTIONS
1. FEAS--CHECKS AN EXCHANGE OPERATION FOR BUDGET FEASIBILITY.
2. COMPARE--CHECKS AN OPERATION FOR PROFITABILITY.
3. RERANK--REORDERS THE PROJECTS IN THE SETS JS AND NS AFTER
EACH EXCHANGE. (JS 1S RANKED IN ASCENDING ORDER OF PRIFIT,
NS IN DESCENDING ORDER)

4. F1TBACK--USES UP BUDGET SLACK BY ADDING ANY FEASIBLE PROJECTS
(REGARDLESS OF RELATIVE PROFIT) TO JS.

EXKEEEXE XX XX E X XN XXX XS T I XL XXX T AR RN NN AN AN KA XK KKK X XN

xxx»x | NPUT VARIABLES

NVAR--THE NUMBER DF 0-)1 VARIJABLES.

NG--THE NUMBER OF OBJECTIVES.

NP-~THE NUMBER OF PRIORITY LEVELS.

NPER--THE NUMBER OF BUDGET PER1IODS.)
NGR~-THE NUMBER OF MUTUALLY EXCLUSIVE GROUPS (ALTERNATIVE GROUPS). 1
W(J)--THE WEIGHTING FACTGR ASSOCIATED WITH OBJECTIVE J.

PR(J)--THE PRIORITY LEVEL WHICH INCLUDES OBJECTIVE J. 1
IGR([)--THE ALTERNATIVE GROUP WHICH CONTAINS VARIABLE 1|. v

A())--THE CONTRIBUTION OF VARIABLE | TO THE ACHIEVEMENT OF

AN OBJECTIVE.

C(l,L)--THE COST OF VARIABLE | IN BUDGET PERIOD L.

B(L)--THE BUDGET UPPER BOUND FOR PERIOD L.

JLEV(1)--THE FUNDING LEVEL WITHIN [GR(1) REPRESENTED BY VAR!ABLE 1|.
IGS~-1F SET TO 1, INCICATES THE PRESENCE OF ALTERNATIVE GROUPS
WHICH MUST BE FUNDED AT SOME NON-ZERO LEVEL.

ON~D VLENOVODLWLN -

- b s

AR AR I A R A R E KN A T AN N A K A A A AR XA R AN K X AN E N A AN X AN E A R RN KRR N AN A NN XX X XX
*xx3 | NTERNAL VARIABLES

1. R(1)--THE PROPORTION OF AVAILABLE FUNDS REQUIRED BY
VARIABLE |, AVERAGED OVER ALL BUDGET PERIODS.

2. AM(] ,K)--FOR EATH VARJAPLE J,THIS IS AN NP-DIMENSIONAL VECTOR, K

WHOSE KTH COMPONENT 1S A WEIGHTED SUM OF CONTRIBUTIONS OF VARIABLE 1

TO THE OBJECTIVES AT PRIORITY LEVEL K.

INIF--A FLAG WHICH COMMUNICATES THE CURRENT STAGE TO THE

SUBROUTINE 'COMPARE'.

INC(1)--HAS A VALUE OF 1 |F VARIABLE | 1S IN THE SOLUTION;

O OTHERWISE.

IGR{M)--HAS A VALUE OF 1 [F THE GROUP M IS REPRESENTED IN

THE SOLUTION; O OTHERWISE

JS(M) - -TAKES ON THE INDEX NUMBER OF THE MTH VARIABLE

IN THE SOLUTION

JL--THE NUMBER OF VARIABLES CURRENTLY IN THE SOLUTION SET;JS(M).

NS(M)--TAKES ON THE INDEX NUMBER OF THE MTH VARIABLE NOT [N THE

SOLUTION.

LL--THE NUMBER OF VARIABLES CURRENTLY OUT OF THE SOLUTION.

SLACK(L)-~-A VECTOR WHICH INDICATES UNSPENT FUNDS IN

EACH BUDGET PERIOD FOR THE CURRENT SO_UTION.

NUMF--1S A FLAG WHICH INDICATES THE TYPE OF EXCHANGE

TGO PERFORM.

oL v o 0 &

-

-
-

c
C
[
C
c
c
c
c
Cc
C
c
[
C
c
C
c
C
c
[
c
Cc
[
c
c
Cc
[
c
C
C
[
c
Cc
c
C
c
c
C
[
c
c
[
c
C
C
C
c
C
c
c
c
c
[
C
C
C
c
C
C
C

34

12. PROF(K)-~1S A NP-DIMENSIONAL VECTOR WHOSE KTH COMPONENT
IS THE PROFIT GAINED IN THE KTH PRIORITY LEVEL SO FAR IN
THE CURRENT EXCHANGE CYCLE.
13. PROFN(K)~-1S A NP-DIMENSIONAL VECTOR WHOSE KTH COMPCNENT S THE
PROFIT IN THE KTH FRIORITY LEVEL FOR THE EXCHANGE
UNDER CONSIDERATION.
14. IFLAG--TAKES OM A VALUE OF 1 IF AN EXCHANGE |S PROFITABLE;
O OTHERWISE.
15. JFLAG--TAKES ON A VALUE OF 1 IF AN EXCHANGE S FEASIBLE; O OTHERWICE
16. CAND(1)~--TAKES ON THE INDEX NUMBER OF THE ITH VARJARLE
IN THE FI1TBACK SET.

KA SRR A AR F XN KRN R KR AR K KA KKK E KN N AN NN KR KRN KN XXX X AR KX X P X RS » %
xxxxCURRENT DIMENSION STATUS
1. NUMBER OF GOALS: 200

NUMBER OF PRIORITY LEVELS: 3

NUMBER OF 0O-~1 VARIABLES(ALTERNATIVES): 475

Sodaula

2
3. NUMBER OF BUDGET PERIODS : 10
4
5

NUMBER OF ALTERNATIVE GROUPS: 150

R N N T A RN RN R A R A X X KX RN AN T R KA A AKX RN KKK KRN A XK A R A A XM KRN AR KN N K
RAM/VM WAS DEVELOPED AND WRITTEN AT

ANALYTIC SERVICES, INC
(TACTICAL DIVISION)
400 ARMY~NAVY DRIVE
ARLINGTON, VIRGINIA 22202

(703) 9879-0700
AV 225~-5640

AOOOOOOOOOOOOOOOONONHOOOOOODDHOOHOTONONOOOOD

EABFXEX XXX X R EE KN AN KA XA XX AR AN XX AN XXX AN AR RN A XX AN XXX XXX Y XX Y X r
DIMENSION A(475),R(475) i
INTEGER OV, HV,0V1,0V2
INTEGER PR(475),W(475)
COMNON /7COMM1/ SL(10),C(475,10),NPER, JFLAG,SLACK(10) §
COMMON /COMM2/ JS(1350),JL
COMiION /COMM3/ AH(475,3),PROF(3), IFLAG,NP,PROFN(3)
COMMON /COMM4/ IGN(150),INC(475),CAND(150),NGR, NVAR

&,LK,ILEV(200),ACH(3)

COMMON /COMMS/ NUMF,OV, JV,KV,LV, MV, HV, 10UT, I0UT2
& ,IBUT3, IN1T,IN2,IN3,NL,NM,NH, 11,JJ, KK
&,1A,1B,1C,1AA,]EB,ICC ’

COMIION /COMM6/ NS(475),LL, I1GR(200)

COMMON /COMM7/ INIF

COMMON /COMMB/ B(10)

COMMON /COMM9/ MMLFL

READ(10,501) NVAR,NG,NP,NPER,NGR, 1GS

READ(10,502) (W(J),PR(J),J =1,NG)

DO 300 L=1,NPER

300 READ(10,503) (C(i,L),}=1,NVAR) N
READ(10,502) (IGR(1),1=1,NVAR)
READ(10,502) (ILEV(1),1 = 1,NVAR)
35

VA

READ(10,503) (B(L),L=1,NPER)
501 FORMAT(1615)
502 FORMAT(16(15)
503 FORNAT(10F8.0)

996 FORMAT(' *,251%)

C

CxxSECTION1 . --ESTABLISH A GOOD INITIAL SOLUTION-CHOOSE MOST COST EFFECTIVE
C SET OF OPTIONS UNTIL FUNDS ARE EXPENDED.

[

CxxFIRST FIND THE AVERAGE PROPORTION OF AVAILABLE FUNDS USED BY EACH VARIABLE
c
€ 1. CALCULATE R(1)
¢
DOt 1 ®),NVAR
R(11:0.0
D6 2 L = 1,NPER
R(JI=R(11+(C(1,L)/B(L))
2 CONTINUE
R(I1 = RCI)/NPER
1 CONTINUE
c
CxxCOMPUTE (BENEFIT(S)/AVERAGE COST) VECTOR FOR ALL OPTIONS.
c
€ 2. CALCULATE AH([,K)
D& 4 K=1,NP

DO 4 I = 1,NVAR
AH(1,K) = 0.0

4 CONTINUE
DO 3 J = 1,NG
READ (10,503) (A(1),1 = 1,NVAR)
K=PR(J)
DO S I = 1,NVAR
IF(1GS.EQ.1.AND.K.EG.1) 6O TO 560
8O0 TO 561

560 AH(1,K)=A(l)
GO TO0 5

561 CONTINUE
AA = (A())eW(J))/RC(I)
AH(),K) = AH(I,K) + AA
5 CONTINUE
3 CONTINUE
C
CxxDETERMINE INITIAL SOLUTION.
C

CxxADD A DUMMY VARIABLE TO INSURE THAT t:1 EXCHANGES WILL BE MADE
€ WITH LEAST BENEFICIAL OPTION,
Cc
1S1Z=1
IFC(ISIZ.NE.O) GO TO 907
NVAR=NVAR+1
NGR=NGR+1
DO 905 K=1,NP
AH(NVAR ,K)£0.
805 CONTINUE
IGR(NVAR} =NGR
ILEV(NVAR) =1
DO 906 L=1,NPER
C(NVAR,L} = 1000.
806 CONTINUE
907 CONTINUE -

o

intim.

r—

c

CxxNOW CHOOSE THE OPTION WITH THE LEXICOGRAPHIC MAXIMUM (BENEFIT/COST)
C VECTOR FOR EACH SUBSET OF MUTUALLY EXCLUSIVE OPTIONS.

c

INIF = 1
LL = 0O
DB 6 M = 1,NGR
MAX=0
DG 7 1=1,NVAR
{F(IGR(I) .NE. M) GO TO 7
INC(1)=0
tv=1
IF(MAX.EQ.0) GO TO 101
CALL COMPARE (1V,O0V,INIF)
IFCINC(1).EQ.0) GO TO 102
LL=LL+1
NS(LL)=0V
oV = 1
60 TO 7
102 LL = LL + 1
NS(LL) = 1
Go 10 7

101 ov=1

INC(I)=1
MAX=1

7 CONTINUE

JS(M)=0V

6 CONTINUE

c

INIF=0

CxxNOW RANK THE SET CONTAINING THE MAXIMUM (BENEFIT/COST) VECTOR
C OPTIONS FOR EACH ALTERNATIVE GROUP

Cc
Cc

C

CxxCHECK TO SEE IF THE INITIAL SOLUTION CONFORMS TO ALL FUNDING CONSTRAINTS

c
Cc

VECTOR MAGNITUDE.
DO &8 M=2,NGR
N=M
103 MO=J3S(N-1)
MN=JS(N)

CALL COMPARE(MN,MO, INIF)
IF(IFLAG .EQ. 0) GO 10 &
INTER = JS(N-1)
JS(N-1)2JS(N)
JS(N)=INTER
N=N-1
IF(N-1) 8,8,103

8 CONTINUE
JL=NKGR

IN DESCENDING ORDER OF (BENEFIT/COST)

IF NOT, REMOVE ENTRY WITH SMALLEST BENEFIT VALUE AND PLACE IN SET CF
C NON-FUNDED OPTIONS--REPEAT UNTIL BUDGET FEASIBILITY 1S REACHED.

CxxxCHECK (JS) FOR FEASIBILITY AND DELETE BOTTOM ENTRY IF NOT FEASIBLE

c

104 DO 9 L = 1,NPER
CC=0.0
DO 10O M = 1,JL
1=2JS(M)

cc=cec+Cc(1, L)
IF(CC.GT.B(L)) 60 TO 105

37

- ﬁ,’-““W S

10 CONT i NUE
SLACK(L)=B(L)-CC
-] CONTINUE
G0 TO 106
105 1l = JsS(JL)
INCCIT1)=0
JL=JaL-1
LL=LL+
NS(LL)=1]
G0 TO 104
[
CxxEXCEPT FOR A PRIOGRITY ONE GOAL INDICATING THOST SUBSETS WHICH MUST
C RECEIVE NON-ZERO FUNDING (IF PRESENT), RERANK OPTIOGNS IN BOTH SETS
C (IN THE SOLUTION AND OUT OF THE SOLUTION) IN RESPECTIVELY, ASCENDING
C AND DESCENDING ORDER OF BENEFIT VALUE,
[
106 DO 11 K = 1 ,NP
DO 11 I = 1,NVAR
IFCIGS.EQ.1.AND.K.EQ.1) GO TO 11
AH(T ,K)=AH(] ,K)*R(1I)
i CONTINUE
CALL RERANK
500 CONTINUE

KKFL=0
C
CxxNOW USING ANY SLACK FUNDS CHECK THOSE SUBSETS OF MUTUALLY EXCLUSIVE
C OPTIONS WHICH ARE NOT IN THE INITIAL SOLUTION TO SEE I|F _A_N_Y MEMBER
€ CAN BE FIT BACK INTO THE INITIAL SQLUTION. THESE ARE ID-NTIFJED IN
C THE OUTPUT AS "FI1TBACK VARIABLES" [F PRESENT.
c
CALL F]1TBACK(KKFL)
c
CxxNOW OUTPUT INITIAL SOLUTION.
Cc
10FL=1
CALL OUTPUT(IOFL)
[
Cxxx2xxxSECTION 2 FIRST EXCHANGE*xxsxxxxx
c

Cxx[N THIS SECTION 2:1 AND 1:1 EXCHANGES ARE MADE BETWEEN THE JS (FUNDED) SEY
€C AND THE NS (NOT FUNDED) SET.

C

CxsNOW TEST IF THE LAST 2 MEMBERS OF THE RANKED NS LIST RELONG TO THE SAMC

€ MUTUALLY EXCLUSIVE GROUP. [IF SO--SET MMFL TO THE INDEX NU. OF THAT GROUP

c
MMLFL = ©
JE=NS(LL)
tMi=LL-1
JF=NS(LM1) '
IFCIGR(JE) EQ.IGR(JF)) MMLFL = {GR(JE) !
11J=0

116 CONTINUE

t1J=11J+1

C

CxxZERO OUT EXCHANGE PROFITABILITY INDICATOR.

c

DO 12 K = 1 ,NP
PRCF(K)=0.0
12 CONTINUE
C

38

CxxNOW SET UP 2:1 EXCHANGE

c
NV2=NVAR+2
INIF=3
DO 13 NL=1,LL !
1DUM=0
NH=NL +1
JJFL=1
c
Csx|F LL LIST 1S EXHAUSTED--EXIT EXCHANGE CYCLE.
c

108 (F(NH.GT.LL) GO TO 13

HV = NS(NH)

LV=NS(NL)
c I
CxxTWwO ENTERING ALTERNATIVES MAY NOT BELONG TO THE SAME
C MUTUALLY EXCLUSIVE GROUP.

Cc
IF(IGR(HV) .EQ. IGR(LV)) GO TO 107
GO TO 108
107 NH=NH+1
GO0 70 108
108 CONTINUE
c

CxxDETERMINE COMBINED CONTRIBUTION TO ALL GOALS J, OF
C TWO "ENTERING" ALTERNATIVES.
c
DO 14 J=1,NP
AH(NV2, J1=AH(HV, J)+AH(LV, J)
14 CONTINUE
c
C**DETERMINE COMBINED COST IN ALL BUDGET PERIGDS L, OF
C TWO "ENTERING" ALTERNSTIVES.
c
DO 15 L=1,NPER
CINV2,L)=C(HV,L)+C(LV,L)
15 CONTINUE

C
] CxxNOW LOOK FOR 2:1 EXCHANGES WITH MEMBERS OF JS SET.
c
DO 16 1=t ,JL
ov=J3s(l1}
IS=IGR(LV)
IX=1GR(HNV)
C

Cx*EXCHANGE MUST BE FEASIBLE WITH RESPECT TO MUTUALLY
C EXCLUSIVE SUBSETS.

c
IFCIGN(1S) NE.O.AND. IGR(LV).NE.IBR(OV)) GO TO 16
IFCIGNCIX) NE. O.AND. IBGR(HV).NE. IGR(OV)) GO TO 110
NVENV2 ,

c [}

CxxTEST EXCHANGE FOR PROFITABILITY (MUST BE MORE PROFITABLE
C THAN ANY OTHER FEASIBLE EXCHANGE TRIED IN 2:1 CYCLE).
c
CALL COMPARE(NV, OV, INIF)
IF(IFLAG.EQ.O0) GO TO 111
C
Cs=xTEST EXCHANGE FOR BUDGET FEASIBILITY.
c

39

o —“W

CALL FEAS(OV,NV)

IF(JFLAG.EG.0) GO TO 110

NUMF =2

60 YO 112
c
Cxx|F ANY 2:1 EXCHANGE W!TH HIGHER RANKING OF 2 “ENTERING”
C VARIABLES HAS BEEN UNPROFITABLE, OR IF ALL 1:1 EXCHANGES
C WITH HIGHER RANKING OF 2 "ENTERING" VAR!ABILES HAVE BEEN
C UNPROFITABLE, SKIP 1:1 EXCHANGE.
C

11@ {F(JJFL.GT.1) GO TO 16

IF(IDUM EQ.LV) GO TO 16

NV=LV
C
C*=xASSUME 1:1 EXCHANGE FEASIBILITY WITH RESPECT TO MUTUALLY EXCLUSIVE
€ GROUPS.
[

IF(NV.EQ.LNM.AND.OV.EQG.LNN) GO TO 16
C
Cx=CHECK 1:1 EXCHANGE FOR PROFITABILITY AND BUDGET FEASIBILITY.
c

CALL COMPARE(NV,OV, INIF)

LNM=NV

LNN=0OV

IF(IFLAG.EQ.0) GO 7O 16

CALL FEAS(OV,NV)

IF(JFLAG .EQ. O0) GO 7D 16

NUMF =1

60 70 112

[

C*xAFTER NON-PROFITABLE 2:1 EXCHANGE HAS BEEN TRIED--1F INDEX OF HIGH
RANKING "ENTERING" VARIABLE 1S 1, OR IF HIGH RANKING "ENTERING"
VARIABLE 'S MUTUALLY EXCLUSIVE GROUP IS REPRESENTED IN THE FUNDED
SET, INCREMENT INDEX OF HIGH RANKING "ENTERING" VARIABLE AND
CONTINUE. 1F NOT, INCREMENT INDEX OF LOWER RANKING “ENTERING"
VARIABLE AND CONTINUE

OOOO0O0

11t IF(1) . EQ.1) BO TO 13
IFCIGN(1S) . EQ.1) GO TO 13
NH=MH+1
JJFL=2
GO 7O 109

c

Cx»|F A PROFITABLE AND FEASIBLE EXCHANGE WAS FOUND, CHANGE CRITER!IOM
C FOR PROFITABILITY, AND SET UP PROVISIONAL EXCHANGE VARIABLES.

c

112 DO 17 K = 1 ,NP
PROF (K) =PROFN(K)

17 CONT I NUE
1A = 11
1OUT=0V
INT = LV
TAA ¢ NL
IF(NUMF . NE.2) GO TO 113
IN2 = HV
1BB = NH
80 TO 111

113 IN2 = O

16 CONTINUE
1OuUN=LYV

40

agqt ¢ o
A.\A—LM‘M’ [Y

80 TY 107
f 13 CONTINUE
i DO 18 K=1,NP
‘ c
Cxx|F NO PROF]TABLE AND FEASIBLE EXCHANGE WAS FOUND--F]TBACK USING
€ REMAINING SLACK AND OUTPUT SECOND STAGE SOLUTION,
c

[F (PROF(K).BT.0.0) GO TO 114
18 CONTINUE

KKFL = 1

CALL FITBACK(KKFL)

1OFL=2

CALL OUTPUT(IOFL)

IF(ISIZ. EQ.1) GO TO 810

c

CxxMAKE MOST PROFITABLE FEASIBLE EXCHANGE FOUND AND BEGIN CYCLE AGAIN

C

114 (INC(IOUT)=0

INCCINY) =1
INTER3=JS(1A)
JSCIA)=NS(1AA)
N=JS(1A)
1J=1GR(N)
NS(1AA) =INTERS3
tP=IGR(INTER3)

IGNCIP)=0
IGNt1J)=1

IFCINZ.EQ.O) GO TO 115

LLL=O

LL=LL-1

DO 396 1=1,LL

J=1+1

IF(NS(1).EQ.IN2) LtL=1
IF(LLL.EQ. 1) NS(1)=NS(J)
396 CONTINUE
INC{IN2) =1
JL=JL+1
JS(JIL)=IN2
LX=IGRIN2)
IGN(LX)=1
115 CALL RERANK
DO 28 L=1,NPER
€c=0.0
DO 29 M=1,JL
1=JS(M)
Cc=CC+C(I, L)
29 CONTINUE
SLACK(L)=B(L)-CC
28 CONTINUE
60 TO 116
810 10OFL=3
CALL OUTPUT(IOFL) .

CLOSE(8))
CLOSE(10]} .
STOP
END
c
CrexanSUBROVUT INESEX s R E X R X R R XX R X R XN ENEKN KRN RN TR
c

SUBROUTINE FEAS(LOV,NV)

41 \

C
CxxCHECKS FOR BUDGET FEASIBILITY.
Cc

COMMON /COMM1/ SL(10),C(475,10),NPER, JFLAG, SLACK(10)
COMMON /COMM7/ [INIF
DO 1 L=1,NPER
SL(L) = SLACKI(L)
SL(L)=SLIL)+C(LOV,L)-C(NV,L)
SLF=SL(L)+.00CS
IF(SLF) 10,1,
1 CONTINUE
JFLAG=1
GO TO 11
10 JFLAG=0
1M RETURN
END

XIS I X I A N A R A XX N XX E XX AN XA RN X KKK XXX XXX AKX
[
SUBROUTINE RERANK
C
CxxREORDERS PROJECTS IN JS AND NS AFTER EACH EXCHANGE.
C
COMMON /COMM2/ JS(150),JL
COMMON /COMM7/ INIF
COMMON /COMM3/ AH(47%5,3),PROF(3), IFLAG,NP,PROFN(3)
COMMON /COMM6E’ NS(47%5),LL, IGR(200)
INIF = O
IF(JIL.LT.2) GO TO 71
CEXXIRERT LR R R XXX XXX JS) FAX XXX XXX XXX X X K
DO 70 M=2,JL
N=M
700 MO=IS(N-1)
MN=JIS(N)
CALL COMPARE (MN,MO, INIF)
IFCIFLAG.EG 1) GO TO 70
INTER=JS(N-1)
JS(M-1)=IS(N)
JS(NM)=INTER
N=N-1
IF(N-1) 70,70,700
70 CONTINUE
71 CONTINUE
Crxxxw s tx XXX XXX XX (NS)X x s ¥ X X¥xx XA XN
DO S7 M = 2,LL
N=M
604 MO=NS(N-1)
MN=NS(N)
CALL COMPARE (MN,MO, INIF)
IFCIFLAG.EQ.O) GO TO 57
INTER=NS(N-1)
NS(N-1) = NS(N)
NS(MN) = INTER
N=N-1
LF(N-1) 57,57,604
87 CONTINUE
RETURN
END
C

(33332 IS R R R R R A R R SN R T R N TR Y

42

R

c
| SUBROUTINE FITBACK (KKFL)

c

CxxUSES UP BUDGET SLACK TG FIT BACK PRDJECTS.

c

COMNON /COMM1, SL(10),C(475,10),NPER, JFLAG, SLACK (10)
COMMON /COMM2/ JS(150), JL
COMIMON /COMM3/ AH(475,3),PROF(3), IFLAG, NP, PROFN(3)
COMNON /COMMA/ IGN(150), INC(475),CAND(150), NGR, NVAR
&, LK, ILEV(200),ACH(3)
COMMON /COMM6/ NS(475),LL, 1GR(200)
COMMON /COMM7/ INIF P
DO 15 L=1,NPER
SLC(L)=SLACK(L)
15 CONTINUE
DG 11 M=1,NGR
{GN(M)=0
1 CONTINUE
DO 10 1=1,JL
N=JS(1)
M=1GR(N)
IGNIM) =1
10 CONTINUE
LK=0
DO 12 1=1,LL
] 11=NS(1) '
MP=0
DO 19 K=1,NP .
P MP=MP+AHCT T ,K) 4
19 CONTINUE
IF(NP.EQ.O) GO TO 12 -
M=1GR(11) \
IFCIGN(MI.NE.O) GO TO 12
i DO 13 L=1,NPER
. IFCC(I],L).6T.SL(L)) GO TO 12
i 13 CONTINUE
LK=LK+1
CAND(LK)=11
DG 14 L=1,NPER]
SLeL1=SLtLY-CC11,L)
14 CONTINUE
12 CONTINUE
IF(KKFL .EQ. 0 .OR. LK .EQ. 0) GO TO 17
DO 18 1 = 1,iK
JJ = CAND(I) {
INCCJIS) =Y
Ju = JL o+
LL = LL-1 ,
JS(ILY = JJ
JK = {GR(JJ) 1
IBN(JK) =1
1 18 CONTINUE .
- 17 CONTINUE .
RETURN -
END

S e e e e

c

CrR R s N IR N R R RN E N RN SR A XA N AR RN G NS N RER A E

c
SUBRROUTINE COMPARE(IN,10,INIF)

c

43

CxxCHECKS FOR PROFITABILITY.
c
COMMON /COMM3/ AH(475,3),PROF(3), 1FLAG, NP, PROFN(3)
COMMON /COMM4/ IGN(150), INC(475),CAND(150),NGR, NVAR
&, LK, ILEV(200),ACH(3)
COMMON /COMM2/ JS(150),JL
IFCINIF .NE. 1) GO TO 11
DO 1 K = 1 ,NP
{FCAHCIN,K) - AHLID,K)) 2,1,3
1 CONTINUE
2 60 TO 10
3 INC(INY = 1
INC(1O) = O
60 TO 10
1M IFCINIF _NE. O0) GO 7O 12
DO 4 K = 1,NP
IFCAH(IN,K) - AH(IO,K)) 5,4,6
4 CONTINUE
S IFLAG = ©
6

e S

60 TO 10
IFLAG = 1
60 TO 10
12 IFCINIF .NE. 3) GO TO 10
O 7 K = 1,NP
PROFN(K) = AH(IN,K)-AH(10,K)
7 CONTINUE
DO 8 K = 1,NP
IF(PROFN(K) -PROF(K)) 18,8,20
8 CONTINUE
18 IFLAG = O !
GO TO 10
20 IFLAG = 1
10 RETURN

END
C
XA E RN AR AR KA AN KR KA XK R XA E XX KKK KX
[

SUBROUTINE OUTPUT(IOFL)

c
C*sWRITES OUT THE SOLUTION. {
c
| COMMON /COMMA/ IGNI150), INC(475), CAND(150), NGR, NVAR
| &,LK, ILEV(200),ACH(3)
‘ COMMON /COMM2/ JS(150), JL
‘ COMMON /COMM3/ AH(475,3),PROF(3), [FLAG, NP, PROFN(3)
COMNON /COMME/ NS(475),LL, IGR(200)
COMMON /COMM1/ SL(10),C(475,10),NPER, JFLAG, SLACK(10)
COMMON /COMMB/ B(10)
COMNMON /COMM9/ MMLFL
IFCIOFL.GT. 1) GO TO 973
OPEN(8, FORM="FORMATTED" , ACCESS="SEQUENTIAL" ,MODE="0UT", '
8CARRIAGE:=. TRUE. ,FILE="FILEOUT")
973 WRITE(8,600)
DO 398 K=1,NP
398 ACH(K)=0.0
IFCIOFL.NE 1) GO TO 25
WR1TE(8,601) [OFL
WRI1TE(S8,602)
WRITE(S, 603)
00 400 is=t,JL

ot e e € wam o4,

400

401

25

403

S0

794
405

407
406
7?77

402
795

41?7

411
909

600

1123S(1)

WRITE(8,604) JS(1),1GR(11),ILEV(II)

DO 400 K=1,NP

ACH(K) =ACH(K) +AH(I 1,K)

CONT I NUE

IF(LK.EQ.0) GO TO 777

WRITE(8, 605)

WRITE(8,603)

DO 401 1=1,LK

L 1=CAND(}) !
WRITE(8 604) 11,1GR{11),ILEV(ID)

DO 401 K=1,NP :
ACH(K) =ACH(K)+AH(11,K) |
CONT I NUE

60 YO 777

IF(1OFL.NE.2) GO TO S0

WRITE(8,601) IOFL

WRITE(8,602)

WRITE(8, 603)

DO 403 1=1,JL

11=3s(1)

WRITE(8,604) JS(1),16R(I11),ILEV(II)

DO 403 K=1,NP .

ACH(K) =ACH(K)+AH(IT,K)
CONT I NUE

60 TO 777

DO 405 K=1,NP

(F(PROF(K) .GT.0.) GO TO 794

G0 TO 795

CONT I NUE

CONT I NUE

WR1TE(8,601) [OFL

WR1TE(8, 602)

WRITE(8, 603)

DO 406 1=1,JL

11:=J8¢1)

IF(JS(1).EQ.0) GO TO 406

WRITE(S,604) JSCi),1GR(I1), ILEVIII)

DO 407 K=1,NP

ACH(K) =ACH(K) +AH(I 1,K)

CONT I NUE

CONTINUE

WR1TE(8, 606}

D0 402 K=1,NP

WR1TE(8,607) K,ACH(K)

CONT I NUE

IFCIOFL.NE.3) GO TO 909

DO 411 L=1,NPER

CC=0.0 ,
DO 417 M=1,JL 1
1=JS(M) ;
CC=CC+C(1, L)

CONT I NUE

SLACK(L)*B(L)-CC

WR1TE(8,609) L,SLACK(L)

CONTINUE

CONT I NUE

RETURN

FORMAT('1',35X, ‘"MULTIPLE OBJECTIVE RESOURCE ALLOCATION
8 SOLUTION SYSTEM BUTPUT') . 1

45

601 FORMAT('1',85X, 'OUTPUT FROM PHASE *,11)

602 FORNAT('0',45X, 'THE FOLLOWING VARIABLES ARE IN THE SOLUTION') '

603 FORMAT('0',17X, ‘VARIABLE INDEX', 16X, 'ALTERNATIVE GROUP NUMBER', 16X, {
& *'FUNDING ALTERNATIVE NUMBER')

604 FORMAT(*' ',23X,13,30X%X,13,38X%X,12) '

605 FORMAT('0',659X, 'FITBACK VARIABLES') v

606 FOR“AT('0', 15X, "ACHIEVEMENT VECTOR') :

607 FORNAT(*' ' ,20X, 'PRIORITY *11,5X,F20.4) D
609 FORMAT('0',40X, 'SLACK REMAINING IN PERIOD ',12,':',5X,F20.6) ;
END -

RESOURCE ALLOCATION METHODOLOGY FOR
AIR FORCE R&D PLANNING

Lot

s

Volume 3: Guide to the Interactive RAM Program

CONTENTS
Volume 3

4

Page

I. INTRODUCTION . . . « ¢ ¢ o« o« o o o o s s o o s o » 1
II. USER'S GUIDES . . ¢ & o o o o o o o o o o o o o & 3 }

A. User's Guide to the Program NOW 3

1. Background . . . « ¢ ¢« ¢ o ¢ o« o « o o o 3
2, Program-User Interaction 4 i

B. User's Guide to Subroutine GRAPH 10

III. PROGRAMMER'S GUIDES. v v v o v v o o o « . 21
A. Programmer's Guide to Program NOW ., 21 }

1. Background + v« v 4 e 4 . e 21

2. Program Description 22

3. Definition of vVariables 30

B. Programmer's Guide to Subroutine GRAPH 33

1. Program Description 33

2. Definitions of Variables Used in Subroutine

GRAPH ¢ v ¢ 4 v o o o o o o o o s 38

IV. COMPUTER CODES . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o« o o o o o = 41 ;

A. Program NOW ¢ v ¢ o o o o o o o« o o = 41
B. Subroutine GRAPH v +v ¢ ¢ o o« o« 47 {

ii

I. INTRODUCTION

This volume is one of four that document ANSER's develop-
ment of R&D resource allocation methodology (RAM) for the
Director of Program Integration, AF/RDX. Volume 1 provides
an overview of the work and its applications. Volume 2 des-
cribes the RAM technique and how to use the general-purpose
computer programs that incorporate it. Volume 3 describes how
to use the interactive computer program developed for use of
the RAM within AF/RDX, and Volume 4 describes the way in which
we tested its computational performance. Each volume
emphasizes some particular aspect of our research and can be
read independently of the others.

This volume describes the computer software we wrote to
enable AF/RDX to use the RAM algorithm with its in-house data
base of Air Force R&D programs. It is designed for that
computer system, specific hardware, and data base; consequently,
the software is not readily transferrable to other systems.
Nevertheless, other readers may also find the software design
potentially useful for decision making in resource allocation.

Our goal in producing the software was to demonstrate
the relative ease with which it could be used to obtain an
investment strategy. The user of the software needs only a
basic knowledge of computer programming. By merely specifying
on the computer terminal the available resources as a function
of time, the user receives from RAM the list of programs
providing the greatest benefit. (This presumes, of course,
that the program alternatives have been evaluated in advance
with respect to the chosen objectives.) To determine the
impact of funding cuts or enhancements, the user simply has
to type in some data. One of the available outputs is a
graphic display of the benefits and costs for the various

1

investment strategies generated. This display enables the
user to see whether the strategies are at "efficient" points

on the cost/benefit curve.

In Chapter II, we describe the interactive portion of
the software. Using the software does not require an under-
standing of RAM, but if interested, the reader may refer to
vVolume 2 for an explanation. The user may desire to make other
parts of the data base interactive or to produce graphic
displays other than those we have designed. Chapter III, which
serves as a programmer's guide for those modifications, re-
guires detailed knowledge of computer programming. Chapter
IV contains the appropriate computer codes.

At the time this work was completed, the anticipated
"benefit" data were not available in the official data base.
Consequently, to demonstrate the software, we substituted
a simple procedure that generates random benefit data. If
appropriate data became available, this procedure could be

easily changed using the information in Chapters III and IV.

o e

II. USER'S GUIDES

A, User's Guide to the Program NOW

1. Background

NOW* is a computer program written in the PL/1 programming
language;+ it is on file at the Air Force Data Services
Center's Multics computer system. NOW is the master program
driving a set of subroutines, the purpose of which is to
determine and compare investment strategies for the selection
of funded program element (PE) alternatives within a mission

area.

The information necessary for the execution of the program
is part of a data base managed by AF/RDX on the Multics,.
The user must obtain the regquired Multics clearances to access
the data base.

The NOW user should be aware of the general nature of the
R&D data base. The data are grouped into 10 mission areas,
indicated by the number codes 000, 100, 200, 300, 400, 500,
600, 700, 80J, and 900. An eleventh category, "off," is also
listed. The "off" category identifies the official data base,
which contains official data in the 10 mission areas. The
official data base contrasts with a working-level data base
that, at any given time, may be in a state of flux. The
"off" data base contains all R&D program elements. Users of
NOW will normally access the official R&D data base. A

*Names of computer terms in this report are in upper case
except where they are to be literal input to the computer
system, Such inputs, when described in the test, are given
in quotes.

*With FORTRAN language subroutines.

e A e

second data base, the "sc" data base, also exists, but, at the
time of this writing, is not in use.

2. Program-User Interaction

The following is a step-by-step procedure for use of the
interactive portion of the program. (See Figure 1 for inter-
actions in an actual run.)

You* are now assumed to be within the Multics facility
and to have a copy of program NOW., You must now log on to the |
system at a SECRET level, If your name is Smith, the appro-
priate log-on format is as follows:

"1l Smith -auth s"

Initiate execution of program NOW by entering the word "now"
via the terminal keyboard. The system will respond by re-
guesting your Multics personal ID. For Smith, the appropriate
response is "Smith," not "Smith -auth s",

After entry of your personal ID, the program asks a series
of questions intended to determine your inputs to a resource
allocation algorithm, The program first asks whether you
desire the rd or sc data base. Respond by entering "rd" or
"sc". 1In response, the program lists the codes indicating
the mission areas to which you have clearance to access. The
mission areas corresponding to the number codes are as follows:

000 Programs Not Assigned to a Mission Area
100 Strategic Offense

* For simplicity, "you" is synonomous with user throughout
the rest of this chapter. '

FIGURE 1
PROGRAM-USER INTERACTION

now
Enter your Multics person_id Clary

Ahat database? rd or sc? rd

You nave access to the following mission areas:?
000

1 00

200

300

400

500

000

100

390

900

off

off data? yes

Wthich mission area? if none, type “none’. 100
nhat appropriation? 3600

Hdow many years of cost would you like to consider? /
Enter year, budget 7v 1000000

cnter year, opudget 8V 100000

Enter year, budget 81 100000

cnter year, budget 82 100000

Enter year, budget 83 100200

Enter year, budget 84 100000

Enter year, budget 85 100000

C— . -

200 Strategic Defense

300 Tactical Air Warfare

400 Space Launch and Orbital Support
500 Mobility

600 Reconnaissance

700 Command, Control and Communications
800 Technology Base

900 Defense-Wide Management and Support.

The program next asks whether you wish to use official

data with the query
"off data?"

It also asks you to select a mission area. Respond with one

of the mission area codes to which you have access. This
selection determines which mission area the resource allocation
routine will consider. If you wish to terminate the program,
enter the word "none".

The R&D allocation process works with the following four
appropriation categories and their respective number codes:

© Aircraft Procurement, 3010
© Missile Procurement, 3020
0 Other Procurement, 3080

o RDT&E, 3600,

Each program element is stored in the data base with, among
other things, its associated appropriation code (3010, 3020,

3080, or 3600). Thus, when you select an "appropriation,"”
a subset of the program elements from the selected mission

area is designated for input to the resource allocation pro-
gram. You must respond to the gquery: "what appropriation?",
with one of the four number codes. At the present time, data
exist for the 3600 appropriation only.

You must now decide which budget years you want the
resource allocation routine to consider and the budget levels
for the selected years. For budget years, you may designate
any set of years from 79, 80, 81, 82, 83, 84, and 85.

The system will ask: "How many years of cost would you like
to consider?" The system will then ask you to enter the
budget year and budget level for the selected years. You
should leave a space between the budget year and level. Note
that the budget is entered in thousands of dollars; therefore,
enter $100,000, for example, as "100".

You have now completed the necessary inputs for one exe-
cution of the resource allocation program. Table 1 gives a
complete listing of your input alternatives.

TABLE 1
USER INPUT ALTERNATIVES

:::. MA'::::'“ Appropristion® Budget Years' Budget Levels
sC 000 3600 79 Expressed in
rd 100 3080 80 thousands of

200 3010 81 doffars
300 3020 82
400 83
500 84
600 85
700
i 800
; 800

*Choose only ane.
TChoose any or all.

e m e

At this point, before execution of the resource allocation
algorithm, the system scans all PE alternatives. Those
alternatives having zero funding levels for the specified
budget years are not considered in the resource allocation
algorithm. They are, however, printed out for your con-

venience.

~

After execution of the resource allocation algorithm, the
system displays those program elements that the resource
allocation algorithm selected for funding. It includes
some self-explanatory, associated data base information.
Costs of each PE alternative for each of the 7 budget years
and benefits to the goals are also provided.

Note the instructions printed out just before the first

page of classified output. After each page of classified
output is printed, you must enter some character, for
example, "a". Then, if you are using a CRT terminal and
desire a permanent output record, you must make a copy on
the Tektronix 4631 Photocopier. You must then reset the
page and, finally, press the return kev. The photocopying
and page reset steps are, of course, omitted if you are at
a hardcopy terminal. The instructions are printed out only :
once, but you must execute this sequence after each page of
classified material is printed.

The next output is a summary of the costs and benefits
of the set of program elements selected by the resource
allocation subroutine. The total cost of the selected pro- .
gram elements summed over all cost years and the total
benefits for each task® are printed out. An example of such

output follcws.

*"Benefits for each task" means the contributions toward
achievement of the goals.

[he total cost of the solution is 9700,00
benefit to task | = 268.81
benefit to task 2 = 230.8Y
benefit to task 3 = 262.54

benefit to task 4 = 181.86
Do you want the output from this strategy saved for graphs? Please answer yes or no. '
yes) ;
do you want to generate more data before constructing graphs? r

yes

Select one of the following?

|=adffferent database

2=different mission area

3=different appropriation

4xdifferent budgets for years currently considered

5=di fferent years of cost data !
osstop)

nhat database? rd or sc? rd
You have access to the following missfon areast
000

1 00

200

300

400

500

600

100

300

you

off

You must now decide whether you want the results of the
resource allocation subroutine to be shown graphically. The
system will ask, "Do you want the output from this strategy
saved for graphs?" 1If the answer is "yes," you must then
decide whether to generate additional results before con-
structing graphs or to proceed into the graphics segment
of the program with the solutions you already have. }

The system will ask, "Do you want to generate more data
before constructing graphs?" If your answer is "yes," the
system will display a set of alternatives for the next

resource allocation. If your answer is "no," the system will

take you through subroutine GRAPH before you can try any

additional resource allocation strategies. (See Section II.B
for subroutine GRAPH documentations.)

At some point, you must decide on your next resource
allocation strategy. You are offered six alternatives: to
use a different data base; to use a different mission area
within your current data base; to use a different appropria-
tion within your current data base and mission area; to use
different budget levels; to use different budget years; or
to exit the program. You need only enter the number
designating the desired option.

If you do select the sixth alternative (exit the program),
then further user/program interaction will consist of repe-
titions of previous interactions.

B, User's Guide to Subroutine GRAPH

This subroutine enables you to obtain graphics output
that depicts the impact of alternative investment strategies
on the costs and benefits pertaining to a single mission area.

We assume in this discussion that subroutine GRAPH is
being called by the NOW program. Use of subroutine GRAPH
under other circumstances is briefly discussed at the end of

this section.

Within the context of the NOW driver program, subroutine
GRAPH is automatically called after each execution of the
resource allocation algorithm, RAM/VM*, Subroutine GRAPH
presents you with a summary of the allocation results, such
as the following:

¥See Volume 2 for explanation of RAM/VM.

ol

The total cost of the sc'utior i3 835.90
e .00

beanefit task § = 1180 ,
benefit to task 2 = 330.00 !
berefit to taszk 3 - Je.58

banefit to Ltask 4 = ec.9.e0 .
berefit to task S « 70e.0:

berefit Lo task 6 ° 2090 .08

berefit to task 7 ¢ 4.60

benefit to Lask 8 - 4.60 l}.

You are then asked if you wish to save the results to be
plotted on graphs, (The information saved is, of course,

considerably more extensive than what is shown.) If you do not
want to save the results you are returned to the main pro-
gram, If you do want to save the results, you are then asked

o

if you want to generate more data before constructing graphs: ’

The total cost of the solution is 83.90 d

contribution to benefit mmasure 1 - 110.0¢
contribrtion to benefit measuvre 2 ° 33e.680
contribution to benefil measvre 2J - 3e.58
contribution to benefil eesasure 4 ° 2215.0¢
contribution to benef.t weasure 5 ¢ T02.€: }
contributlion to benef.t messure € » ceee.e0
contribution Lo benefi:t sessure 7 » 4.60
contribution to benefi1t wessure 8 - 4.60

Do you want the dutput from this strateg, saved for graphs? Please snsuer yes or n .

‘ -
,: yos want to generete wore dats before constructing graphs”
yes

If you answer "yes," control is passed back to NOW for another
resource allocation with a different investment strategy. If
you answer "no," the subroutine enters the section where it

constructs the graphs.

As described in Figure 2, four types of graphs are avail-
able through subroutine GRAPH. Note that Graph Type 4 can
portray the results of only one resource allocation at a
time. The graph will still represent only those results even
if you have saved the results of applying resource allocation
methodology to different mission areas or in some other manner

have constructed noncomparable results in a series of resource

allocations. The rest of the graphs compare the data resulting

11

FIGURE 2
SUMMARY OF SUBROUTINE GRAPH CAPABILITIES

Graph Type 1

Graph of benefit of solution to
individual task versus total
solution costs summed over al)
years.

Each point plotted is total cost of
solution due to strategy k versus
benefit of that solution to task i,
k=12, ..,j

Graph Type 2

Total benefit versus total solution
cast for each strategy.

Each point plotted is the total
cost of solution due to strategy k
versus total benefit due to
strategy k, k=1,2, ..., .

Graph Type 3

Individual task benefits versus cost
of individual budget periods.

Each point plotted is the cost of
year i versus the benefit to task n
for the solution due to strategy k,
k=12, ..,]j.

Graph Type 4

Cost of a given strategy for each
budget period.

BENEFIT
TO TASK i

TOTAL SOLUTION COST

BENEFIT

TOTAL SOLUTION COST

BENEFIT
TO TASK n

COST OF YEAR i

COST

BUDGET PERIOD

e

it

from separate resource allocation runs. Clearly, you must

make certain that inputs to such graphs are comparable.

Graph Type 1 depicts the total solution cost summed over
all years versus the contribution of the solution to a spe-
cific task for each strategy. Thus, what is graphed is the
set of points {(x(k),y(i,k), k=1,...,j}, where j is the total
number of solutions saved for graphing; x(k) is the total cost
of the solution corresponding to the kth strategy the user has
saved; and y(i,k) is the benefit of the kth solution to the
ith task. Each point on this graph represents a different
resource allocation. You must input task index i. The

computer/user interaction needed to generate this graph is:

;o yov wanrt any graphs of tctal solutior ccsts sumeed over all ors vs. contri
\ebwtion of uYn'ton to indivadue benef.t messures? ve Vi€

]
‘og tn andex for Lhe benef.t messurs.

satution cost dats 23.%0 70.52 103.60
soluticn denefit date 2219.82 2035 . 00 1529, . 00

You can generate this graph for as many tasks as you desire.
Figure 3 shows a sample of this graph type.

Graph Type 2 represents total solution benefits versus
total solution costs for each strategy. Thus, the plot con-
sists of the set of points {x(k), y(ngl,k), k=1,...,3}. The
variables x(k) and j have the same definitions as those in
Graph Type 1. The variable y(ngl,k) stores the sum of the
benefits of the kth strategy, i.e.,

y{ngl,k}) = I y(m,k), ng = number of tasks.
m=1

Once again, each point represents a different solution. The

computer/user interaction to generate this graph is:

13

4

Benef it to task

2250 ¢
2200 4
2150 1
2100 -
2050 1
2000 ¢+
1950 {
1900 1
16850 1
1800 ;
1750 4
1700 A
1050 1
1800 4

1550 1

FIGURE 3
SAMPLE GRAPH TYPE 1

[

1500 bt bt b oo b b $e A b —
75.0 80.0 ©.0 90,0 650 100.0 1050 110.0

70.0

Tatal

sclution

14

cost(rn millions)

PN

i b b <

-t e o

- -'-'--'-'..--.llIllF-""'-'-l------------‘!

Do'm wsat s groph of tota! bennfit vs. tetal cest for each straleg,”

:luhu coal dals 83.99 79.90 168.60
selution banxefit datas $3908.78 §066.10 1$98.3%

A sample of this graph type is given in Figure 4, ‘

Graph Type 3 depicts the solution contribution to task n
versus the cost of an individual budget period i for each
strategy or solution. The plot consists of the set of
points {(yr(i,k), y(n,k)), k=1,...,3 }. The variables j and
y(n,k) have the same definitions as those previously mentioned.
The variable yr(i,k) is the total cost of the kth saved
solution in the ith budget period. Again, each point repre-
sents a different strategy. The user/computer interaction
necessary to generate this type of graph is:

Do you want say grapha of cost of individis! budget per.iods vs. individual task beref . ts?

es
oy 1A Dudget period dea:red.
:q in task benefit index.

Te be plotied is a & graph of cost of v'lr 3 vs. benefit to task S5 .
ssolutioa cost data 36.10 se 32.7e
solution banelit date 700.01 0. 70 0.00

You can generate this graph type for as many budget periods
and tasks as you desire, An example is given in Figure 5.

Graph Type 4 depicts the cost of a single strategy for
each budget period. The results of each strategy are graphed
separately to avoid the possibility of an inconsistent graph.
The computer/user interaction necessary to generate this
graph is:

Do you went grephs shcwirg cost of stretegy for escr P.gget per. .+

yes

The subroutine automatically generates this graph for each
strategy as currently written. An example of this graph

type is given in Figure 6.

Benef it

8500 1
e0os 12
5500 {
5000

4500 {
4000 4
7500 4
3000 4
25004
2000 {

1500 1

1000

b

FIGURE 4
SAMPLE GRAPH TYPE 2

TS R S S e O e T e e e e |

70.0

75.0 80.
Toutal

0 as5.0 0.0 95.0 :09.0 105.0 110.0
solution cos3tlin millions)

S

Benefit to tesk

750
700 A
650 1
600 1
550 1
500
450 -
400 -
350 1
300 ¢
250 4
200 1
150 1
100

soT

0LQ+—4~+—+‘+—+—+~+—4-+"+—+~+—+u+—h—+~0
32.6 33.0 33.4 793.8 4.2 3.6 3.0 I5.¢4 IS8 ¥W.2

FIGURE 5
SAMPLE GRAPH TYPE 3

T T L

Cost of yecor 3

FIGURE 6
SAMPLE GRAPH TYPE 4

I
I
i
f
|
49.5 f
47.0 4

44.51

42.0 1

37.04

34.5

32.0 1

29.5 1

e
L35

27.0w

COoSsT

24.5 4
22.0 1
19.51
H 1107

14.5

12.°‘L—+—-—0~0-~—+——¢ e el e R e ettt SIS SRR EE R e e 2
1080.0 1660.6 1681.2 1981.¢ 1962, 4 1963. 0 1683.6 i

Bicdget iMerud

For each graph type, you are asked if you want any graphs
of that type. If the answer is "yes," for Graph Types 1, 3,
and 4, you are asked to input the appropriate benefit measure
indices or budget period indices. Note that you cannot use
the budget period and task directly; rather, you must use the
appropriate index. Thus, if you desire a graph involving
1990 (the third budget period), you must input the index "3",
not 1990.

Since Graph Type 2 has no alternatives associated with
it, the system will simply ask whether or not you want it.
Answer "yes" or "no"; no other inputs are necessary

After each graph is produced, a question mark will flash
in the upper lefthand corner of the screen. You may now make
a copy of the graph on the Tektronix 4631 photocopier. To
inform the subroutine that you are ready to move on to the
next graph, type "g" and hit the return key. You should
clear the screen before typing "g" to avoid screen clutter.
If you do not, the next question will be printed over the
graph, which is not automatically removed from the screen.

Graph Types 1, 2, and 3 pose a problem in that each
point plotted on these graphs is an output from a different
strategy, but no information is embedded in the graph to
tell you which point is associated with which strategy. We
recommend the following procedure to provide identification.
Before displaying the graph, the subroutine will print the
data to be graphed. This information occurs in two rows of
data. The first entries in each row correspond tco the inputs
from strategy 1, the second entries in each row correspond to
the inputs from strategy 2, and so forth. For example, if
you have answered "yes" to the guestion, "Do you want any
graphs of total solution costs summed over all years vs,

19

- e

benefit of solutions to individual tasks?", you will be asked
to key in a task index. Assume you have keyed in index "5,"
and that three solutions have been saved. The following data

will be displayed:

[

solution cost data 83.90 70.90 108.60
solution benefit data 700.01 0.70 0.00

(see Figure 3)., The first two values in each row, 83.90 and
700.01, represent the point (83.90, 700.0l) resulting from
strategy 1. The second two values represent the point (70.90,
0.70) from strategy 2, and so forth. We recommend that you
make a copy of these data when they are flashed on the screen.
If you press the "copy" key as soon as the data are presented,
the copy can be made before the subroutine is ready to present .
the graph. Hopefully, this entire problem will be solved by
future modifications to the subroutine.

Another problem, which can easily be corrected, is that
once you have answered the question, "Do you want to generate
more data before constructing graphs?” with a "no," you will
exit from subroutine GRAPH, and all data stored in it will be
lost. Thus, no data are saved after the graphs have been made.

You may wonder why the points in the various graphs are
not connected with lines. The reason is that the gquantities
being graphed do not change in a linear fashion; rather,
values tend to jump suddenly. Furthermore, the parameter
changes that will cause a change in the optimal solution are
not predictable without extensive sensitivity analysis. Thus, '
"connecting the dots" in the usual linear fashion is mathe-

matically meaningless.

The last concern is that graphs can be produced only
from Tektronix CRT terminals that are attached to the
Multics computer system.

III. PROGRAMMER'S GUIDES

A. Programmer's Guide to Program NOW

1. Background

This program acts as an interface between the user, the
data base, and the allocation and graphic subroutines. The
user inputs the mission area, appropriation, and years under
consideration and their budget ceilings. The program then
retrieves program elements (PE) numbers and alternatives
from the data base and indexes them for input to the allo-
cation routine. The results are passed to the output
subroutine and then to the graphics subroutine. When sub-
routine GRAPH is finished, the program run is essentially
finished, and the user may stop or choose one of the other

options to generate a new problem.*

The main program is written in PL/l1, and some of its

significant features are:

O The range of a DO loop is terminated at the first
"end" statement, which is eguivalent to the FORTRAN
"continue” with the appropriate statement number
in front.

o The concatenation operation joins two or more
strings together into one larger string.

o The four subroutines that are written in PL/1 are
all physically contained in the main program. This
means that a variable in the main program is known
by the same name in the subroutines, as long as it
is not declared in that subroutine. This eliminates
the need for argument lists in the call statements
to these subroutines.

*For details on how tcC solve problems with this routine, see
"User's Guide to Program NOW," Section II.A.

21

e —

PL/1 stores its array elements in row-major order;
that is, the rightmost subscript varies most rapidly.
This differs from FORTRAN, which uses column-major
order. Here, the dimensions of any two-dimensional
array in the main program must be reversed from th~
dimensions of the corresponding array in either of
the FORTRAN subroutines, before the values can be
passed correctly through the argument list.

The program accesses the data base through the built-in
d4sl subroutines to retrieve the necessary data. Each dsl
call is usually followed by a statement that calls the
com_err_ subroutine if the variable code is not equal to
2zero. This is only the case if something abnormal has
occurred during the dsl subroutine, and com_err_ will print

out a description of the error that caused the nonzero

code.

A new search rule must be added to the user's ordinary
search rules so that the system's graphics subroutines can
be located when called. The add_search_rules_ (asr) command
accomplishes this task and may be done automatically if the

command is placed in the user's start~up.ec.

2. Program Description

This program is described sequentially. Line numbers

have been added for convenient reference and are keyed to the
computer code listed in Section IV.A of this volume.

22

e e

Line
No.

2-9

10-16

17-18
19

20

21-29
30-35

36

37
38
39
40~-41
42-43

-Program Description

Procedure statement - entry point to program
Declaration of all external subroutines

Declaration and definition of a block for the quit
(interrupt) condition. 1If the break key is passed
while the program is running, control will be trans-
ferred to this block, which ensures that the data
base is properly closed before returning to command
level

Declaration of integer variables and arrays

Declaration of binary-based floating point data,
which corresponds to the FORTRAN "real" data

Declaration of the cost data as fixed decimal to
correspond with the numbers in the data base

Declaration of all character data
Initialization of some character data to the
different parts of a dsl subroutine call's
selection expression

Initialization of the variable path to the path
name of the proper data base

delta is set to a small positive number

rseed is set to any random seed

Initialization of five different variables to zero
Person_id is asked for and read in

User is asked to input rd or sc for data base, and
the response is read into the data base

23

.y e

44-48 The data base is opened. If an error occurs,
com_err_ is called and processing is halted

49-50 Scope is set on the "protect" submodel, and com_err_
is called if an error occurred

51-58 The first mission area that the user has access to '
is retrieved, and the usual precautions are taken v
in case of an error

59 A mission area access heading is printed out

64-65 The user is asked if he wants official data, and
ves(y) or no(n) is read into dc

66-67 The user is asked to input the mission area, and
the response is read into subma

68-73 If the user entered "none" for mission area, then
the data base is closed and processing stopped

74-75 If the user wants official data then ma is set :
equal to "off"; otherwise it is set to the mission 4
area 1

76-78 The name of the submodel that the user will be ac- Y

cessing to obtain PE numbers and cost data is
retrieved, and com _err_ is called if an error occurs

79-85 Scope is deleted, the data base is closed, and
com_err_is called if either code does not equal
zero

86-87 Ask for appropriation and read into appro

88-89 Ask for number of years to be considered, and

read into nper

90-93 Ask for year and budget ceiling for each period,
and read into nyr() and b()

94-104 This section opens the proper submodel and sets
scope on "char" and "relation." Char is the part
of the data base that contains PE numbers and
their different funding alternatives. Relation
is a variable that represents the part of the
data base that contains the appropriate cost data |

24

1
‘[;
|
|
|
|

105

106

107
108-117

118-122

123

124

125

126-175

127

This section is skipped if dec equals five. This
can happen only if the user selected option five
after the first allocation was completed. If
this is the case, then these instructions are
unnecessary and so can be omitted

The number of groups (PE numbers) is initialized
to zero

exp8 is set to a character string that forms the
selection expression of the data base call that
will retrieve PE numbers given the mission area
and appropriation

The first PE number is retrieved

This block is activated if the preceding retrieval
resulted in an error. An error message and three
user options are printed out, and control is trans-
ferred as desired

This loop retrieves all remaining PE numbers and
places them in penum()

The number of variables (a PE and an alternative)
is initialized to zero

exp7 is set to a character string that represents
the selection expression of a data base call that
will retrieve the alternatives and cost data for
each PE

A heading is printed out for any zero cost alter-
natives that may be found

This loop retrieves all the alternatives and the
cost data for each for a given PE. If any alter-
native has cost equal to zero for all the years
under consideration, then it will not be indexed
as a variable. If all the alternatives under a

PE have zero cost, then that PE will be eliminated
and ngr reduced by one

If i equals the reduced number of groups, then go
to the next i

i

130
131

136
137-141

142-148

143
144

145-147

149-165

166-174

176-178

th PE number is obtained from penum()

The i
The first alternative and its associated cost
data are retrieved

Subroutine DCOST is called

The current alternative is checked for zero cost.
If yes, then the PE and alternative are printed
out and flagl and jj are set to 1. Flagl =1
signifies that the first alternative under this PE
has zero cost. 3Jjj is changed from 2 to 1 because
k, which indexes the remaining alternatives under
this PF, is started at jj and in this case will

be the first, not the second, variakle

If the first alternative was a valid one, however,
then this section is processed instead of the
previous one

The number of variables is incremented

Subroutine COST is called to store the cost data of
the current variable

The variable is indexed into the group number and
the alternative number under that group and the
funding level is stored in the progalt array

This loop retrieves the remaining alternatives

and their cost data under the current PE. It checks
for zero cost and indexes in the same manner as that
for the first alternative

This section is processed only if flagl = 1 and
flag2 = 0, which can happen only if no nonzero

cost alternatives occurred under the current PE.

In this case, the penum array is adjusted to
eliminate that PE number, the number of groups

is reduced by one, and i is decremented so that a
number will not be skipped on the next pass through
the loop

The allocate, output, and graph subroutines are
called in order. Allocate and graph are referenced
by <filename>$<program name>, since they are lo-
cated in a storage region outside of the main pro-
gram

26

'———-——-————____.___j

ey,

179-182

183

184-193

194-204

205-211

212-215

The user options are printed and the response read
into dec

If the user asks for a different appropriation, then
control is transferred to statement 12

This section is for a different data base or
different mission area options. Scope is deleted,
the data base is closed, and comm_err_ is called
in case of error. Then control is transferred to
the appropriate place

This section is for the different budget ceilings
option. The number of years with new budgets is
asked for and read into nchange. Then each year
and its new budget level are read in and control
transferred as appropriate

This section is for the option to choose different
years of cost data. All budget ceilings are zeroed
out, and control is transferred back to where the
years and budget ceilings are input

This section can be reached only if the user elects
to stop. Scope is deleted, the data base is closed,
and processing is halted

e et e s s .

Description of Subroutines DCOST and COST

DCOST: This subroutine checks all alternatives for zero
funding. It totals the cost of the current alter-
native over the years under consideration and
returns that value in asum. When dcost is finished
processing, asum is immediately checked for a zero
value.

COST: Once an alternative has been determined to be a
legitimate variable, subroutine cost is called to
store its cost data. The main program uses the
array cst, with cst(i,j) the cost of variable j in
budget period i. Note that these dimensions are
reversed in the corresponding ¢ array in the two
fortran subroutines.

output:

2-8 Declarations and initializations

9-11 Print instructions and read in a dummy character

12 Set the entire sum array equal to zero

13-17 Since six alternatives will be printed per page,
this block determines how many pages will be
required and how many alternatives will be left
for the last page.

18 Skip two lines of output

19 Concatenate a data base variable to represent the
selection expression necessary to retrieve the cost
data for each variable

20-50 This loop prints a page of output each time through

21-23 Print page heading

24-25 Set upper limit on inner loop to 6, unless this is
the last page to be printed

26-45 This loop prints an alternative and its associated
data each time through

28

e e

27-29

30-35

36-37

38

39-45

46

47-48
49
50

Determine the PE number and funding alternative for
the current variable

Retrieve the PE title for the current variable, call
com_err_, and exit the loop if an error occurs

Retrieve the cost data for the current variable, and
exit the loop if an error occurs

Call subroutine sumcost to maintain a running total
of the cost of the solution for each budget period

Print out the current variable and its cost and benefit
data, and repeat loop until ii > index1

If all output is finished, print the cost total for
each budget period

Print another heading, and skip two lines
Read in a dummy character

End the page-printing loop

29

AD=-A096 S46

ANALYTIC SERVICES INC ARLINGTON VA

F/6 5/1
RESOURCE. ALLOCATION METHODOLOGY FOR AIR FORCE R&D PLANNING, (U)

N 80 G COOPER» S ADAMS, J CLARY» J PERLIS

Jul F49620-77=-C-0025
ANSER=TON-80=1 NL

3. Definition of Vvariables

nvar:

ngr:

appro:
pealt:

progalt
(r):

ma:
subma:
nper:
nyr

{n):
ny:
budget:
b(n)
yri-yr7:

cst
(ilj):

sum(n) :

The number of variables. A variable is a specific
funding alternative with nonzero cost under a
given PE number

The number of groups or PEs under a given mission
area and appropriation with at least one nonzero
funding alternative

PE number under consideration

Contains all legitimate (nonzero funding) PE numbers
Appropriation

Funding alternative under consideration

Funding alternative of variable n

Equals "off" for official data; otherwise eguals
mission area

Mission areas, 000 to 900; used to retrieve PE
numbers

Number of budget periods that will be considered for
the problem

nth year, two digits, 79-85

Year index number, = nyr{y) - 78
Budget ceiling for a given year
Budget ceiling for year n

Cost data for a given variable

Cost of variable j in budget period i

Total cost of solution in period n

30

delta:

asum:

nchange:

init:

dummy :

expl
exp8:

sub-
model:

data
base
dbi,
dbit:

code:

db:
rela-

tion:

ilev
(n):

Small positive number, to check for zero cost
alternatives

The total cost of an alternative, summed over all
periods under consideration

User option, number of years with a new budget
ceiling

Passes to subroutine GRAPH the number of times that
it has been called minus 1

A l-character dummy variable used to temporarily
halt the output so that the user may reset page
if a CRT is being used

Character strings that contain parts of the various
data base selection expressions

The submodel (subset) of the data base that will be
accessed

The path name of the proper submodel

Data base index numbers, returned from a dsl_Sopen
call

Returned by all dsl subroutines; code equals zero
if the data base call was performed successfully;
otherwise it eguals a particular number, depending
on the exact error that disabled the subroutine
Data base, rd or sc as user desires

The specific area in the data base that contains
the appropriate cost data

Index number of variable n under its PE number

31

igr(n): Index number of the PE to which variable n belongs
is(n): Index number of nth solution variable

jl: Number of variables in the solution i
zw(i,j): Benefit to task i from variable j

ng: Number of goals (tasks)

x1(),y10),
y2{(): Arrays that preserve the values of three arrays of

subroutine GRAPH in case it is called more than once

B. Programmer's Guide to Subroutine GRAPH

1. Program Description

This section describes in detail the workings of sub-
routine GRAPH. You* should read it with a subroutine listing
in hand (see Section IV.B). An alphabetical listing of

variable definitions is given in Section III.B.

Before starting into subroutine GRAPH, we should discuss
! the parameter j, which is passed to GRAPH in the subroutine

! call statement. The parameter represents the number of

i sets of resource allocation output data you have saved to be
graphed. You must set j equal to zero in the calling program
before calling GRAPH.

l The variables ¢, uper, js, ngr, nvar, ng, nyr, zw, jl,
X, ¥, and yr are listed as subroutine arguments because the
calling program is written in PL/1. A PL/1 program may not
share variables with a FORTRAN subroutine.

! The first DO loop, DO 2, and the statement preceding it
\ x(§+1)=0.0,
(initialize x(j+1) and yr(L,j+1), L=1,...,nperxr. The DO 5 loop
! computes the total solution cost x(j+1) and the cost per-
budget period of the solution yr(L,j+l)
jl1 nper
) x(j+1)=I I c(js(i),n)
\ i=]l L=1
jl ,
yr(L,j+l)= £ c(js(i),L) ; L=1,...,nper, !
i=1
where L indexes budget periods and i indexes the selected
program alternatives. The total solution cost is printed

out at this time.

*You in this section refers to you, the programmer. However,
at times you will be taking on the role of user as well.

e

33

The next DO loop, DO 10, computes the contributions of
the solution to the goals with respect to which benefits are
measured (also called tasks), y(m,j+1l), for each task m.
Thus

jl
y(m,j+1) = I zw(js(i),m) , m=1,...,ng.
i=1
The total benefits for these tasks are also printed out.

At this point, you have the total solution cost and the

total solution benefit as follows:

The total cost of the scittion 1 10 .F0
conlribut.on to task ! - PR T
coniritut.on to task ¢ - 33.0¢
contribution to task 3 » 3t.98
contribution to task 4 - 15ce.2¢
conlribut.on tc task 5 0.0
contribut.ion to task 6 - 9.e¢
contrabution tc tasx 7 - 2.5
contribution %2 task 8 1.85
Do you want Lhe oulpit froe Lr.s stretegy sa.ea For gmacre- 7 . pass ar: ey

\cor no.
s

0 you warti (o ge-erate w-re da‘a ref.re (cnctrort ong gvnebe”

ro

Do you wart any graphs of tcta s:-'ut.cn _rsts s:eeaz over all yedrs vs contro

chution of soiubior Lc ind...duei bLerel ¢ mear re-

s
!:g in indax for the benef:! mma: . re.
4

You are then asked whether you want to save the data associ-
ated with this solution for incorporation into graphs. If

you answer "yes," j is incremented by 1,

j<——j+l.

o

Since the value j+l1 was used in the DO 5 and DO 10 loops,
incrementing j has the effect of saving the results of these
loops. Also at this time, the sum of the benefits of the
solution, y(ngl,j), is computed in the DO 15 loop,

ng

y(ngl,j) = L y(m,3).
m=1

You are then asked if you want to generate more data
using additional investment strategies before constructing
graphs. This questi- 1is also asked if you answered "no" to
the preceding question. (However, if you did answer "no," j
will not be incremented, and the next time GRAPH is called,
the current stored values will be lost.) If you want to
generate more data, control is passed back to the calling
program. If you do not, you are taken to the portion of
+he subroutine that generates the graphical output. We

will proceed under the assumption that you answered "no.

The first graph type (see Figure 3 for sample)* that can
be generated is the contribution of the solution to individual
tasks y(i,k), m+l,...,ng versus total solution costs summed
over all years, x(k), for each solution k, k=1,...,j. Thus,

a graph consists of a set of points {(x(k),y(i,k)), k=1,...,3}.

You are asked if you want any graphs of this type. If you
answer "yes," you are then asked to key in the index i for
your desired task. The index is an integer from the set
{1,2,...,ng) referencing one of the tasks. 1If you answer
"no," control jumps to the "101 continue"” statement for
entry into next graph type. We will proceed under the
assumptic: that you answered "yes."

*For a summary of all graph types offered, see Figure Z.

TTT———

s R O S Sap——-

Once you have selected the benefit measure index i, the DO
27 loop stores the value of y(i,k) in the single subscripted
variable z(k), k=1,...,3. This is necessary, since the
"xyplot" statements used to construct the graph will not
accept a double subscripted variable.

The total solution cost x(L) is written out for each
solution L, L=1,...,k, and the contribution of the solution
to task i,y(i,L) is written out for each solution L, L=1,
«eerj. You should make a copy of this information when it
appears on the screen, since you will have no other way of
knowing which point on the graph is associated with which
strategy.

The encode and associated statements that now occur are
used to concentrate the task index i to the rest of the
graph's title, stored in zz, and the rest of the y-axis
title, stored in ben, If you are unfamiliar with encode
statements, you should consult Mulctics system documentation
before tampering with encode statements, variables used in
encode statements, or format statements associated with
encode statements. The encode statement is discussed on
pages 5 through 12 of the Multics FORTRAN Guide.

The "call xyplot" statements that now occur call system
subroutines that construct and display the graph. A complete
discussion of the xyplot statements is contained in the do-
cument XYPLOT, which was prepared by, and is available from,
Mr., Robert G. Finney of the Air Force Data Services Center.

Once the graph has been displayed, a guestion mark will
appear in the upper lefthand corner of the screen. This
indicates that you may now make a copy of the graph on the
Tektronix 4631 photocopier. Once you have made a copy of
the displayed graph, clear the screen to avoid the clutter

36

that arises from overprinting on the graph (the graph will

not be removed automatically). Then inform the system that

you are ready to move on to another graph by typing "q".

Upon receipt of the "g" signal, the subroutine returns to

the question, "Do you want any graphs of this type?" If

you do, the preceding sequence is repeated. If you do not,

the subroutine goes to the "101 continue" statement to initiate
proceedings on the next type of graph.

The next statement after the "101 continue"” statement
asks whether you would like a graph of total benefit versus
total cost for each alternative (see Figure 4 for sample). If
you do not, control is shifted to the "206 continue" state-
ment before the next set of graphs. If you do, the subrou-
tine proceeds to construct this graph. The DO 110 loop
stores the sum of the benefits of the kth strategy y(ngl, k)
in the single subscripted variable 2z (k) because "xyplot"
statements will not accept double subscripted variables as

inputs.

Next the system displays the x and y coordinates of the
points to be graphed, (x(L),L=1,3) and (y(ngi,L), L=1,...,3).
As we have mentioned previously, you should make a copy of
this information on the Tektronix 4631 copier. The "call
xyplot" statements create and display the graph of the set
of points {(x(L),y(ngl,L), L=1,...,3}.

The next graph type shows individual task benefits for
each strategy versus individual budget periods (see Figure 5
for sample). If you want a graph of this type, key in the
budget period you desire and the benefit measure index. The
DO 214 loop stores the double subscripted variables y(n,k)
and yr(i,k) in the single subscripted variables z(k) and
v(k), respectively. The arrays of numbers to be graphed
{yr(i,L),L=1,3} and {y(n,L), L=1,j} are then printed out.

37

it e,

Py

The encode statements set up the title and x~axis and y-axis
labels. The xyplot statements construct and display the graph.

After you have viewed the graph and signaled the system
to continue with the program, control is returned to the "201
continue” statement. You are then asked if you want any more
graphs of this type. If so, the sequence repeated. If not,
control is transferred to the "30l1 continue” statement for the

final set of graphs.

The last graph type shows the cost of an individual stra- i
tegy, or solution, for each budget period (see Figure 6 for
sample). Thus, the set of points graphed is {(yr(i,n),nyr(i),
i=1l,...,nper}. This graph is automatically produced for each

n, n=1,...,3 if you want any graphs of this type.

When the "401 continue" statement is executed, the graph- i
ing is completed. If you set j equal to zero, you will rein-
itialize subroutine GRAPH. Data currently stored in sub-
scripted variables will be overwritten the next time sub-
toutine GRAPH is called by program NOW.

2. Definitions of Variables Used in Subroutine GRAPH

ben Character-string variable used in constructing
the legend for the y-axis on several of the
graphs

c(js(i),1l) Cost of the js(i)th program alternative

during the lth budget period

cost Character-string variable used in constructing
the legend for the x-~axis on one of the graphs

iz Used in an xyplot$build statement to indicate
the type of symbol to be used to designate
plotted points

38

jl

ng

ngl

nper

nyr (i)

title

tle

tpe

tse

v(k)

x(3)

Denotes the number of different scolutions to
the resource allocation problem that have been
stored in subroutine GRAPH; each time the

user answers the guestion "Do you want the
output from this strategy saved for graphs?"
with a "yes," j is incremented by 1, and the
solution is saved

Number of selected PE alternatives

Number of goals or tasks toward which resources
are allocated by the resource allocation al-
gorithm i

Used in several places as a temporary storage
location for the value ng+l

Number of budget periods over which program j
costs have been computed; budget periods would
typically be in fiscal years

The ith budget period; for example, if the
second budget period is 1990, the nyr(2)=1990

Character variable used to store the title of
each graph; previous content stored in title :
must be deleted before new content is inserted

Character variable used in building up the
legend for the y-axis of one of the graphs

Character variable used in building up the
legend for the y-~axis of one of the graphs

(same as above)

Used to store yr(i,k) for each k; necessary

because arguments called by xyplot$build must

be variable with a single subscript, so a

graph using the values stored in yr(i,k) ‘
cannot be built using yr(i,k) as an argument ,

Stores the total cost of the solution corres-
ponding to the jth strategy that the user
saves to be graphed

r “

xlabel Character variable that is used in storing the
legend for the x-axis of each of the graphs

y{m,3) Stores the benefit of the jth strategy or
solution to the mth task

y(ngl,3) Stores the sum of the benefits of the jth
strategy
ylabel Character variable that is used in storing the

legend for the y-axis of each of the graphs

yr(l,3) Stores the total cost of the jth strategy or
solution in the lth budget period 1

Z (1) f
Used to store the value of y(i,l) for each 1; ,
necessary because arguments called by xyplot$
build must be variables with a single subscript,
so a graph using the values of y(i,l) cannot be
built using y(i,l) as an argument

zw(js (i) ,m) Stores the value of the contribution of the
js (i) th program alternative to the mth benefit
measure

zz Character variable used to store the title of

each of the graphs

40

IV. COMPUTER CODES 1

A. Program NOW

pr now.pll
“now.pll 11705779 1224.1 est Mon

now! proc options{mainls
dcl (ramsallocate,gphsgraph) entry options(variable)i
dcl dsl_Sopen entry options{variable)s
dcl dsl_Sclose entry options(variable)s
dcl dsl_sdl_scope_all entry options{variable)s
dcl dsl_sdl_scope entry options(variable)s
dcl dsl_Sset_scope entry options(variable)s
dcl dsl_Sretrieve entry options(variable)s
dcl com_err_ entry options{variable)s
dcl quit conditions
on quit
bejing
call dsl_Sclose(dbil,code)
call dsl_Sclose(dbi,code)st
stopi
end}
dcl(dbi,dbli,dec,code,ilev(350),1gr{350) ,nyr(10),sum(7),ng,
perin,ny, Jl,3Js(80),nvar,ngr.nper,flagl,flag2) fixed binaryt
dellyl(10,25),x1(10),est(10,350),b(10),rseed,del ta,budget,zw(4,500)) binary floa"
dclyrl,yr2,yr3,yrd,yr5,yro,yr7,asum) fixed decimal(8,0)4
dcl(pealt,progalt(350),db) char(2),dc char(l),
(ma,answer) char(3),
appro char(4), (pe,penum(80)) char(6),
dp char(9), (supmodel,expl) char(i0),
relation char(8), subma char(3),
exp2 char(1v), axp5 char(20),path char(25),
(name ,person_id) char(15), acct char(32),
database char(35), exp3 char{(46),exp8 char(103),
exp4 char(130), exp7 char(148)}
expl="-range (p i
exp2=") (¢ char) =-select #3
exp3="p.pe -where (((c.ma_x00 = .V.) & (c.pe = p.pe)"i
exp5=") & (p.appro = ,V.})"}
exp4=") -select p.dp p.yri_dol p.yr2_dol p.yr3_.dol p.yr4_dol p.yr5_dol p.yrdé_dol
*o,.yrl_dol-where ({p.pe=.V.) & (p.appro = .V.))"}
patn=*>udd>rRIIS>rdis_Llib>RD_DH>"}
delta=,000001 % .
rseed=74852399,03%)
inft,dbi,dbil ,dec,ngri=03
oPUt skip list(¥Enter your Multics person_id"}i
get list(person_1id)i
143 put skip list(*iihat database? rd or sc??)s
get list(db)i
158 call dsl_sopen(*>udd>RDIS>rdis_lib>rD_DB>»protect.dsm* ,dbil,),codeli
if(code“=0) then
dot call com_err_{(code,*opening protect")}
stopt
end}

O

2

call dsl_sset_scope(dbli,*protect*,t,0,30,code)i
f(code”=0) then call com_err_(code,*setting scope on protect”)s
call dsl_Sretrieve(dbll,%~range(p protect)-select p.ma p.permission ~where(p.
person_id,ma,perm,code)s
if(code™=0) then
dot call com_err_{(code,“retrieving ma‘s*)i
call dsl_Sclose(dbil,code)s ;
if(code*=0) then call com_err_(code,”closing database”)} |
stops
end?t |
put skip list("You have access to Lhe followiny mission areass“}i -- .
60 do while(code=0)}
put skip list(mals
call dsi_Sretrieve(dnil,*~another",person_id,na,perm,code)s
endt
put skipl(2) list(#off data?)y
get list(dc)s
11t put skip list(#which mission area? {f none, type “none”’.*)i
get list(subma)i
if(subma="non") then 3
doi call dsl_sdl_scope_all(dbil,code)s 1
call dsl_Sclose(dbf¥,code)i
if(code*=0)then call com_err_{(code,*closing database™)i

stopt

ends

1f(dc="y%) then ma="off"}
else ma=submay f
call dsl_sretrieve(dbil,"-range(p protect)-select p.submodel-where({p.ma=.Vv ﬁ
ma,person_1id,submodel ,code)
1f(code®=0) then call com_err_(code,¥Choosing ma‘s")i

12% call dsl_Sdl_scope_all(dbil,code)s
@O if(code"=0) then call com_err_(code,"*deleting scope on protect#)i
call dsl_sSclose(dbil,code)s
if{code™=0) then
doi call com_err_{(code,”closing protect)i
stopi
end} A
put skip list(“What appropriation?#)s
get list(appro)i
17: put skip list(*How many years of cost would you like to consider?¥)s
get list(nper)i
do {=1 to nperi
put skip list("Enter year, budget”)t
get list(nyr(i),b(il))s
end}
{f(dec*=5) then
dos datavase=path :isubmodel$
call dsl_sSopen(database,dbi,i,code)’
if(code™=0) then
dot call com_err_(code,”opening database"”)s
stopt

oo __endi

relation=dbii¥rp_%.imnai
call dsl_Sset_scope(dbi,#char",),0,relation,t,0,code)d
1f(code*=0) then call com_err_(code,”settiny scope on database")i
endi
ngr=03
expB=zexpliirelationiiexp2iiexp3:iexp5s
call dsl_Sretrieve(doi,exp8,subma,appro,pe,code)}
1f (code™=0) then
dot call com_err_(code,*no pe")i
ut skip edit(#No pe was found for mission area“,ma,” with appropriation",appro
#)xdi fferent mission area and appropriation,“2=different aopropriation",“3=sto
col(l),a,colll)r,ali
get list(dec)t
if(dec=1) then go to 1)
if(dec=2) then go to 12
else go to 183
end}
do while(code=0)4%
ngr=ngr+l4
jao penumingr)=pe}
call dsl_sretrieve(dbi,#-another,subma,appro,pe,code)i
end}
nvar=0%
exp7=expliirelationiiexp4s
put skip list(®The folloxiny pe*s and alternatives have zero funcding for the spec
do {=l to ngri
if(i=ngri) then go to 161
3i=2s
flagl,flag2=03
e=penum{i)3}
call dsl_Sretrieve(dbi,expi,pe,appro,pealt,yrl,yr2,yr3,yré4,yr5,yr6,yr7,codels
if({code”=0) then
dos call com_err_(code,"retrieving cost data*)i
go to 13%
end}
call dcosts
if(asum<=delta) tnen
dos put skip list(pe,pealt)s
J¥=11
40 __flagl=13
endt
else
dot nvar=nvar+lg
call costt
fgrinvarl=i
ilevinvar)=i}
progalti(nvar)=pealts
endi
do k=}j by I3
all dsl_Sretrieve(dbi,”—another”,pe,appro,pealt,yri,yr2,yr3,yrd4,yr5,yré,yr/,
1f(code”=0)then go to 1123
call dcosti

if(dec=5) then
dot do i=! to nperi
nyr({)=0;3
b(i)=0.0%
end;
go to 173
endi
18: call dsl_sdl_scope_all(doi,code)s
call dsl_Sclose(dbi,codelt
{f(code*=0) then call com_err_{(code,"closing database")
stopi

dcosts procs

asum=0.03
do ii=] to nperi
ny=nyr(1i)-78%
{f(ny=1) then asum=asum+yris
else 1f(ny=2) then asum=asum+yrZi
else 1f(ny=3) then asum=asum+yr3i
else 1f(ny=4) then asumxasum+yrdi
else {f(ny=5) then asum=zasum+yr5¢
else if(ny=6) then asum=asum+yroés
else asum=asum+yr/s
end?l

end dcostt

cost? proci
do ii=l to nperi
ny=nyr(ii)~78y
ifiny=1) then cst{ii,nvari=yris
else 1f(ny=2) then cstl(ii,nvar)=yr2s
else i{f(ny=3) then cst(ii,nvarl=yr3s
else 1f(ny=4) then cst(ii,nvarl)=yrds
else 1f(ny=5) then cst({i,nvar)=yr5s
else 1f(ny=6) then cstl(ifi,nvarl=yréi
else csti(ii,nvar)=yrii
endi

end costi

outputs procs
dcl exp3 char(10), exp4 char(153), title char(25),
rank char(4), comment char(30), exp7 char(i7i),
alt char(2), dummy char(i),exp6 char(i0)s
expo="-range (d %
exp3=Y-range (p ¥
exp4=*)-select p.yrl_dol p.yr2_dol p.yr3.dol p.yrd4_dol p.yr5_dol p.yré6_dol p.y:

“p.comenti-where (((p.pe = ,V.) & (p.appro = ,v,)) & (p.dp = V.))"¢]
put skip edit(*1.Type in any character, reset page, and carrfage return.",

“After each page has finished printing, repeat step 1.4)(a,colll),a)s

get list(dumny)i

sum=0}

index=(j1-1)/6+13%

44

if(asum<=delta) then

doi k=k-13
put skip list(pe,pealt)s
end}

else

doi nvar=nvar+ls
igrinvar)=ii

160 flevinvar)=ki
progalt{nvar)=pealts
call costi

flag2=ls
endi
endy
112s if(flagl=}] & flag2=0) then
dos

do j=i to ngr-1Ij
penum(j)=penum(j+1)¢
_ ends
ngr l=ngri
ngr=ngr-13
i={=13%
endi
13tend}
162 call ramsallocate(cst,nper,ngr,nvar,ilev,igr,b,rseed,nyr,sum,zw,dec, Js,ng, jl
call outputs
call gphsgraph(init,cst.nper, Js.ngr,nvar,ng,nyr,zw, jl,xi,yils
put skip edit(¥Select one of the followingt“,*i=different database","2=different
120" 3=di fferent appropriation”,¥4=different budgets for years currently considered",
“5=4i fferent years of cost data"“,"6=stop*)(a,col(l),a,colll),a,col(l),a,colll),a,
get list(dec)s
if(dec=3) then go to 123
if(dec=l i dec=2)then
doi call dsl_sdl_scope_all(dbi,code)s
call dsl_sclose(dbi,code)s
if(code®=0) then .
dot call com_err_(code,%closing database*)
stopt
—\gndt
if(dec=1l) then go to 143
else if (dec=2) then go to 15%
endi
1f(dec=4) then
dod put skip list(®£nter number of years with new budgets")i
get list{nchange)i
do i=1 to nchangjes
put skip list(“Enter year, new budget)}
get list(ny,budget)s
200 n=ny-783
-~ bln)=budget}
ends}
go to 163
ends

45

PO S YRV UUR IS

irea=acd(11,46)3
indl=6;
if(irem®=0) then indl=irem;
npe=0}
put skip(2)% o
exp7=exp3iirelation:iexp4i
40 do 1=1 to indexi
put skip edit(#xxxSECREIx#x" “Page",1)(col(40),a,skip,col(/S),a,f(2))}
put skip edft(#Allocation report of mission area *,subma,* using #,ma," data"): i
put skip edit(”Cost in thousands of dollars"”)(col(30),a)s
indexli=6%
if(i=index) then indexl!={ndi}
do {i=1 to index!s
npe=npe+l§ .
pe=penun(igr(jsinpe)))
alt=progalt(jsinpe)l)s
call dsl_sSretrieve(dbi,”~range (c char) -select c.pe_title-where ((c.pe=.v.)
pe.subma,title,codelt

if(code*=0) then i
dot call com_err_(code,”returning pe)s L
go to 1133
ends 1

call dsl_Sretrieve(dbi,exp?,pe,appro,alt,yrl,yr2,yr3,yrd4,yr5,yr6,yr/,coment,
if(code”=0) then go to 113}
call sumcosts

put skip(2) ed{t(MPE¥ ,#pE TITLEY,%APPRO DP M MCOMMENTS")(x(5),a,x(12),a,]
40 put skip edit(pe,title,appro,alt,commen*t)(x(2) a(5),x(2),a(25),x(2),a(4),x(5)

put skip(2) edit(#]979% ,]1980%,"198149,4]932% #1983 #1984+ ,4|985% ,#TSKI# ,#T5K
(x(1B),a,x(5),8,x(6),a,x(6),a,x(6),a,x(6),a,x(6),a,x(4),8,x(4),a,x(4),8,x(4),
put skip edit(#COST“,yrl,yr2,yr3,yrd,yr5,yr6,yr7,(zw(}j, js(npel)ido Jjj=l to ng
put skip(2)3
1131 ends
{if(i=index) then put skip edit(*Total¥,(sun(l)do 1l=1 to 7)) (x(1),a,x(3),(7)F(10
put skip edit(###xSECRET#%k")(skip(3),x(40),a)s ;
put skip(2)s
get list(dummy)}

ends

sumcosts procs

sum(|l)=sum(l)+yris

sum(2)=sum(2)+yr2i

sum(3)=sum(3)+yr3s

sum(4)=sum(4)+yras

sum{b)=sum(5)+yrsSs

sum(o)=sum(6)+yrés

sum(/)=sum(/) ¢yr73 !
end sumcost$

end outputs

ends

r 26 1.585 0.736 55

46

B. Subroutine GRAPH

subroutine grapht})

common/comml/ SL(1C0)ec(200010)enpereiflaqgestlacktll)

common/comm2/ §stc0)q4fL

common/comma/ 4an(*0)¢dnc(200)qcand(T0)engrenvarelkeilevi200)oach(3)
common/comml0/ noenyr(l10)esum(T)eZw(5042%) |
AAmension vY(25e10)ex(10)s henef4t(25)e a(200)eyr€25.10) -
dimension z(25)evt2%)envi10)

rxternal xyptottinit(aescriptorsdexyplotibuitd(descriptors)

external xyplotsplot(descriptors)exyplotsreset_detaults(descriptors)

character titles4BynlabelsT04ylabet=20ocurve_name* 4o

characterr bene2S,costs224t Ll o260tpea2Totses234,220414tlee22

§ 4s numrer of sets of data to be graphed. i
nar is the total number of program alternatives.

nper s the number of budget periods.

n: is the number of qoals.

fl 4s tre number of selected pe alternatives,

n(§) 4s the total cost of the solution for strategy §.

tenetdt(m) s the benefit of the solution to task m.

yr(ie§) 4s the cost 4f the Jth solution in the 4th year. !
y(4+4J) 4s renefit ot Jth strateqy to 4th goal.

sum(i) 4s the cumulative cost ot current strategy for budget perfod 1+ 415147,
2844§) 4s benefit to Jth goatl of 4th variables 1=lenvar § j=1lenge

xti1+1)z0.0
0 2 Lzlenper i
yritejs1)=0.0

continue

compute total and yearly costs for solution,
J0 5 Lzlenper

to 5 121491

xt§el)zutfsldec(isti) o)
yrilgjeddzyrtlefeldectis(id)

cont {nue

wrPitr(reb) x€Jel)
format(» *4"The total cost of the solution §s%,112,2)

rompute task benefits of solution.
10 16 m-leng

yimei417:-0.0

o H $=1.§1L

yime '+1)=y(mede1)eZu(is (1) em)
continue

"0 11 m lenng
writ (6+412) moyimejel)

continue !
form.t (= "y x, " benefit to task®yi3¢"™ =%4t10.2)]
print o "0 vyou want the output from this strategy

saved for graphs? Please answer yes or no."”

resd (5¢220) answer
tormat(a)
1ftanswer.eqe "no") no to 1000

IEB ES!
nilzngel
yin>le4>=0.0

47

a

M

.y

31

110

compute sum of benetits for this strategy.
00 14 1=1¢no

ytnaleJdzytngledeytiv i)

cont inue

print +*co you want to aenerate more data before constructing oraphs?*

read(5¢220) answer
§ttnswer +eq. "yes®) go to 1000

n:l=ng*l

cont inue
print +" 0o you want any graphs of total solution costs summec over
all years vs. benefit of solution to Individual tasks?*

resd(He20) answer

formatial)

1t(answer «*Qes ®no®dno to 1irl

print e%rey in fndex for the task.”
read (54) i

do 27 L=1.14
ZEL) -y (i)
cont inue

ot (e 930) (x(t)elz=1e)

format{® ®."solution cost data"¢30(112.242x))
Wwrite (o o313 (ylieldal=101)

format(® %e"solution benefit data®e30(112.242x))
72="TOTAL SOLUTION COST vs. BENEFIY FOR TASK®
encodettitles35) zz41

form t(a40e43)

ten="fienetit to task“

encode(ylabet32) benst

formit(al%eid)

xlabel="Total solutfon costi(in milldons)®

call xyptotsiniti(2estitieexnlabeloylabetoll)

call nyplotsreset _defaults(Ds0sDo"secret™sls"® "y0910000® "oll)
call xyplotsbudld(fexeze0le® "olell)

catl xyplotiplot(iLl)

continue

a0 to 19

rontinue

print +" 0 you want a araph of total benetit vs. total cost for each
readi5¢20) answer
1f(nswer .€qe. "no®) ao to 206

ro '10 #°1414
2(k)zylnalek)
rontéinue

Wrdt. (E£e?0) (LDl 14))

writ: (Ae31) (ytneleldel=le])

t4tLe="TOTAL SOLUTION €DST vro TOTAL RENCFTT™

xlab Lz""gtal solutton costiin millions)®

viabel - "Penefit”

e 1L xyplottdniti2.titleextinbeleylabeleit)

cott -yulot1reset_dcfau\tstn.n.n.'uecret'.l.’ Belnl0a04" "0l l)
call wyplotstudldtiens2eNls® "elell)

48

strateoy?"

214

. e
—

311

call xyplotsplottll)

continue .

i
rontinue ?
orint " o you want any qraphs of cost of indivicual buaget periods

v~e dnaividual task benefits?® v

reasd(S42n) answer

f1f(answer .€aqe “no") ao to 301 '
print «"rey in budnet period desired.*”

readtbe) 1

print ¢"rey 4n task benetit index."

readiSe) n

write (64211) 1en
format(® ®*,97g be plotted 1s & a graph ot cost of year®ei3,*
vse benefit to task®e139® .®)

30 214 k=1.}
2{k)zyinek)
vik)zyrtiek)
ront inue

write (6 o%0) tyr(dsldet=1e9)

Write(6 o31) C(y(netdel=14))

titte = @

xLabel=" =

cost-"Cost of year®

encodel(xlabel ¢232) costet

form. t(al2+42)

tten="penetit to task®

encode(ylabel«233) benen

format(al5.42)

tle="COST OF YFAR®

encodeltil¢224)tleyd

form-ttal2«i3)

tsez* vs, BFMFFIT TO TASK®

encodeltpes?235) tsesn

form 1t (a2044%)

encode(titie«236) tiloetpe

torm..t(a154824) *

call xypltotsinit(2.titieoxlabeloylabeloell)

call xyplotireset _defaults(De0ely®secret®qle™ "90910.00" “oll)

call xyplotSnuitldl(fevezelle™ ®elell)

call xyplotsploti(tl)

continue

rant {nue
c1

continuce A

print +"' 0 you want araphs showing cost of strateay for each budget p.riod?*®
read(Se.) answer
1t (nswer.eqes "nNo") co to &r1

ll=- L]

0 311 4:=1enper
vii)=flo.ttnyrti))
cont dnue

2=

xlavel=z"hudqget Perioo®
ylabel="Cost*"

T e — ~

22=%C0ST vs. BUDGET PERIOD FOR STRATEGY"
do 7% nz1.4)
do 320 {zlenper
Z{4)z=yr(ien)
0 continue
encoaqe(tities325) Zzzen
formct(ald%eid)

» U L
n

call xyplotsiniti2+titleosxliabelsylabetottl)
coll xyplotireset _defaults(O0eDelo™setret®yle® “4y0e10.0¢™ "oll)
call xyplotsbudtoinpereveZelle® “o 124t}
call xyplot¥plotill)
IFERFED!
*75 continue

— e ———ee L

4 1 continue

call xyplotidone

i=0
1 060 continue
clogse(s)
return
end
>
3
4
3
1
soece 1020P0) DudddRNY AMALDICIaryDdrxe fortran 1030001}

50

Volume 4:

RESOURCE ALLOCATION METHODOLOGY
FOR AIR FORCE R&D PLANNING

Computational Performance of RAM Programs

e AR e . S s e o

e

CONTENTS
Volume 4

I. INTRODUCTION . « & v & & o v v o o o o o o o oo 1 B
II. COMPUTATIONAL TEST RESULTS . . » « o « o + « o o« 3 1

A. Testplan. L] L]] [- L] . . . L] [) . . . - * - 3
B. Test RESULES . . © ¢ & ¢ ¢ ¢« o « o o o o o« o« 4

III. TEST PROGRAM OPERATION ., . . & &« ¢« & o o ¢ o o « 15 i

A. Test Problem Generation, . . . +« « o« o « o« « 15
B. Test Problem Solution. . . « « & « o« o o o« « 17

1. Run Specifications for the Test Program., 17
2. Representation of Decision Variables . . 22

—'—'-————"-m—_——‘

I. INTRODUCTION

This volume is one of four that document ANSER's develop-
ment of R&D resource allocation methodology (RAM) for the
Director of Program Integration, AF/RDX. Volume 1 provides
an overview of the work and its applications. Volume 2 de-
scribes the RAM technique and how to use the general-purpose
computer programs that incorporate it. Volume 3 describes
how to use the interactive computer program developed for use
of the RAM within AF/RDX, and Volume 4 describes the way in
which we tested its computational performance. Each volume i
emphasizes some particular aspect of our research and can be
read independently of the others.

In this volume, we describe the results of our test program ;
and document the way we conducted the tests. Chapter II con-
tains our test plan, test results, and the inferences we can

make from the results. In Chapter III, we document the pro-

cedures we used to make the tests. The results are readily
understandable, although some knowledge of statistics would be
helpful in uvnderstanding how we made inferences from the test
data. The test procedures are of narrower interest and are

dicain,

documented primarily for our use in any further testing. They
may be of some value, however, to others engaged in similar
tests.

The primary reason for testing, other than to find any
mistakes in the software, is to verify that the computer
programs can handle the problems likely to be encountered.
Capability is measured by determining the accuracy the program
can achieve and the computer resources it requires as a function

of problem size and complexity. We are satisfied that RAM/VM
and RAM/GP (as defined in Volume 2 of this report) provide an

excellent capability for routine use in the problems that

are likely to occur in AF/RDX. Both programs have also
performed well in other applications (see Volume 1). However,
we still do not know all the limits of this software, since
the cost of determining them would be prohibitive. Evaluation
is difficult because we know of no other similar computer
program that will accomplish the same tasks. Consequently,

we can only compare the results of our work with the results
of commercially available programs, which have less capability
and must use simplified test problems. To achieve a higher
level of confidence would require a substantially more
expensive test program. We believe we have achieved an

acceptable level of confidence with the testing done.

II. COMPUTATIONAL TEST RFSULTS

A. Test Plan

After running the resource allocation algorithms on the
Multics, we decided to formulate and carry out a test plan
to evaluate the computer programs. The testing process had
several goals. First, it was to verify the logic of the
software. Second, the testing process was to define any ‘
limitations on the size or complexity of the problems that]
the programs could be expected to handle. Finally, it was j
to define conditions under which one programmed algorithm

would be preferable to another.

The test plan used the Control Data Corporation's (CDC) j
APEX package,* a linear programming package that can solve
integer programming problems. Unlike our resource alloca-
tion programs, the APEX cannot perform goal programming.
However, because we knew of no other suitable alternative, {
we chose APEX as the standard against which the performance
of our programs would be measured. We therefore did not
use the goal programming capabilities of our programs.

The testing procedure consisted of running randomly gen-
erated problems in each of several problem sizes for each of
our RAM programs+ and the APEX., The test problem size was
the number of decision variables (alternatives to be con-
sidered in the resource allocation) for a problem. We
devised random problems by using a random number generator
to supply coefficients for problems with a specified number
of decision variables. Then for each trial problem, we compared 1

* Hereafter, we refer to the package simply as APEX.

+ We also used our MIP2 program (see section II.B), but
since we dropped the program partway through the testing
it is not considered a significant part of the procedure.

3

and evaluated outputs for each of the RAM codes with those

for APEX. We drew our conclusions from a statistical analysis
of the results as well as from objective qualitative analysis.
Finally, we tried to find standard test problems used by the
operations research community against which to test the RaM
codes, but we were not successful.

We encountered two principal difficulties during the testing
process., First the use of APEX constrained the testing because
it could not handle, at an affordable cost, problems of the size
needed in our test procedure. Instead of comparing the results
of our programs with APEX results for problems involving 100 to
300 decision variables, we had to limit comparisons to problems
with less than 50 variables. Even for the smaller problems, APEX
could not guarantee an optimal solution, but rather a solution
within several percent of optimunr. The second difficulty was
the lack of a standard against which to measure goal programming.
We are not likely to resolve this problem without development of
additional independent goal programming algorithms.

B. Test Results

Three RAM programs were evaluated in the tests: RAM/VM,
RAM/GP, and MIP2., MIP2 was our early experimental version of
the resource allocation methodology, which was based on a variant
of a simplex linear programming algorithm. Although this model
will not be used in the future, partially as a result of these
tests, the results are included here for comparison. RAM/VM
and RAM/GP combine elements of goal programming and linear 0-1
programming and use the direct solution technique described in
Volume 2. RAM/VM seeks the resource allocation that maximizes
the overall benefit received subject to resource constraints.
RAM/GP seeks the allocation that minimizes deviations from a set
of specified, quantitative objectives. Both use a priority system
for optimizing classes of objectives.

4

Table 1 shows the results of the trials of the RAM/GP,
RAM/VM, MIP2, and APEX programs. For each trial, the same
randomly generated problem was run on each of the four pro~
grams. On three occasions, the APEX did not obtain a solution
within the specified time,

The column labeled "Percentage of Optimum (APEX)" indi-
cates within what percentage of optimum the APEX solution was
guaranteed. In Trial 5, for example, the best APEX solution
found is guaranteed to be within 5.89 percent of the value of
the objective function at the true optimal solution. As a
consequence of this, the product of 1.0589 and the objective
function value (1,363.428), or 1,443,734, is an upper bound
for the value of the objective function evaluated at the actual
optimal solution.

Note that the MIP2 program rarely reached a solution,
returning instead a message that the program had been unable
to find a feasible solution. This inability to find feasible
solutions is caused by the inability of the program to maintain
required solution criteria for each interaction. It does not
indicate that the problem had no feasible solution. We had
suspected this problem before testing but had not realized its
extent until partway through the testing procedures. When the
MIP2 program did find a solution, it matched those found by the
other programs. However, we decided that the extent of MIP2's
inability to find feasible solutions warranted dropping it from
the testing plan.

We applied the Wilcoxon Matched-Pairs, Signed-~Rank test

to the data in Table 1. We used this nonparametric statistical '
test to compare the results that RAM/GP and RAM/VM provide with

those provided by APEX. The advantage of the nonparametric test

for paired differences is that it does not require the assumption

TABLE 1

SUMMARY OF TRIAL RESULTS

_ Number Value of Obiegtive Fun_ctian at Percentage
Trial of Best Solution Obtained pf
Number Variables Optimum
RAM/GP RAM/VM MiP2 APEX (APEX)
1 12 630.952 Not - £30.952 1.14
2 15 631.946 Run -~ 604.211 9.50
3 18 1,461.984 1,492.763 1,492.703 Optimal
4 2 1,689.535 1,689.535 1,689.520 1,689.535 Optimal
5 21 1,380.276 1,380.276 NFS* 1,363.428 5.89
6 21 1,265.859 1,265.859 NFS 1,265.859 5.97
7 21 1453479 1,453.479 NFS 1,417.578 6.72
8 21 1,354.015 1,354.015 NFS 1,232.959 9.49
] 21 1,467.194 1467.194 NFS 1,467.194 1.25
10 21 1,513.992 1,513.992 NF3 1,513.992
n 21 1,185.199 1,185.199 NFS 1,185.199 1.40
12 21 1,361.286 1,361.286 NFS 1,361.286 3.05
13 21 1,073.619 1,073.619 NFS 1,047.597 7.83
14 45 2,510.933 2510.933 NFS 2,393.704 418
15 45 2,735.956 2,735.956 NFS 2,735.054 314
16 45 2,854.954 2,854.954 — 2,869.605 3.54
17 45 2,584.174 2,584.174 - 2,584.174 1.22
18 45 3,095.392 3,095.392 - 3,095.392 1.19
19 45 2,339.578 2,339.578 —
20 45 2,220.9M 2,220.9M1 —_ 2,179.185 Iin
21 45 2,500.680 2,500.680 —
22 45 2,499.623 2,499,623 - 2,622.231 0.42
*No feasible solution.
6

that the underlying population of differences is normally
distributed. The nonparametric test makes no assumption
about the population distribution. We could not divide

the trials into groups according to the number of variables
because the resulting data sets would not be large enough
to be statistically meaningful. ‘

Table 2 shows the data for applying the Wilcoxon Matched-
Pairs, Signed Rank Test to the values of the objective functions
provided by RAM/GP and RAM/VM. The test is carried out in
terms of the paired differences, 4 = X1 = X2, where the d
values represent differences between two observations on
the same individual or object. In this case, the difference
is between the results obtained by two computer programs
given the same randomly generated problem. The absolute
values of the differences are ranked from 1 to n, with the
smallest difference being assigned the rank of 1. Each rank
is then given the sign (either + or -) of the associated
value of d. I1If there are ties in ranking, the mean rank
value is assigned to the tied items. If, for example, the

sixth and seventh ranked items are tied, a rank of (6 + 7)/2
6.5 is assigned to each. If the difference between paired
observations is 0, that item is dropped and the number of
differences reduced by one. Since Table 2, has 10 zeros in
the difference column, the effective sample size is 20 -~ 10 = 10.

As indicated in the last two columns of Table 2, the
sums of the ranks are obtained separately for the positive
and negative differences. These sums, I ranks (+) and
I ranks (~), form the basis for the null hypothesis Hjy:
I ranks (+) = I rank (-). Specifically, the null hypothesis
is that the positive and negative differences in the population
are symmetrically distributed about a mean of 0. The smaller
of the two ranked sums is called Wilcoxon's T statistic and is the
test statistic. Hence, in Table 2, the test statistic is T =

I ranl- (=) = 16.

TABLE 2
DATA FOR THE WILCOXON MATCHED-PAIRS, SIGNED-RANK TEST

Trial RAM/GP APEX Difference | Pank Signed Rank
Number Solution Solution d= X — X of
X, Xy 1772 4 Rank (+) | Rank (-)
1 630.952 630.952 0
2 631.946 604.211 +27.735 4 4
3 1,461.984 1,492.763 -30.779 5 5
4 1,689.535 1,689.535 0
5 1,380.276 1,363.428 +16.848 2 2
6 1,265.859 1,265.859 0
7 1,4563.479 1,417.578 +35.901
‘ 8 1,354.015 1,232.959 +121.056 9 9
3 9 1,467.194 1,467.194 0
10 1,513.992 1,513.992 0
L 1,185.199 1,185.199 0
12 1,361.286 1,361.286 0
13 1,073.619 1,047.597 +26.022 3 3
14 2,510.933 2,393.704 +117.229
15 2,735.956 2,735.956 0
16 2,854.954 2,869.605 ~14.651 1 1
17 2,584.174 2,584.174 0
18 3,085.392 3,095.392 0
20 2,220.971 2,179.195 +41.776 7 7
22 2,499.623 2,622.231 -122.608 10 10
]
39 16

Table 3 gives the critical values of T. For sample size
N=10 at the 0.10 level of significance, T can be no greater
than 10. Note that Table 3 presents the maximum values T can

have and still be considered significant at the stated signif-
icance level. Thus, since the calculated value of T(16)
exceeds 10, we cannot reject the null hypothesis of identical
population distributions. Hence, we concluded that the per-
formance of RAM/GP and RAM/VM did not differ significantly

in the values obtained for the objective functions for the
trial problems. We reached the same conclusion when comparinc
RAM/VM with APEX and RAM/GP with APEX.

The value of these results is obscured by the lack of
certainty as to whether APEX was achieving optimal solutions
for the trial problems. That APEX guarantees a solution
to be within a specified percentage of optimum does not mean
that the solution is not optimal. Nevertheless, except for
Trials 3 and 4, we cannot prove that the solutions are optimal.

Table 4 presents upper bounds for the value of the ob-
jective function at optimal solutions and the ratio of the
RAM/GP solution to the upper bound. For 2l-variable problems,
the mean of the ratios is 0.973 with a standard deviation of
0.22 and variance of 0.0004. For 45-variable problems, the
mean of the ratios is 0.977 with a standard deviation of 0.019
and variance of 0.0003. The overall mean of the ratios is 0.975
with a standard deviation of 0.020 and variance of 0.0004.
Using this information, we can establish, for the overall set
of 22 samples, a confidence of 0.995 that 70 percent of the
sample distribution of ratios are between the values of 0.944
(minimum value occurring) and 1.007 (maximum value occurring).

We can establish a confidence of 0.95 that 80 percent of the

TABLE 3
CRITICAL VALUES OF T* IN THE
WILCOXON MATCHED-PALRS, SIGNED-RANK TEST

Level of significance for one-tailed test ‘
.05 .025 01 005 .
N Level of significance for two-tailed test
10 .05 .02 0
5 0 - — —
6 2 0 - —_ |
7 3 2] —_
8 5 3 1 0
9 8 5 3 1
10 10 8 5 3
1" 13 10 7 5
12 u 13 9 7
13 21 17 12 9
14 25 i 15 12
15 30 25 19 15
16 35 29 23 19
¥} 4 34 27 23
18 47 40 32 27
19 53 46 37 32
20 60 52 43 kY)
2 67 58 49 42
22 15 65 55 48
3 83 73 62 54
24 9N 81 63 61
25 100 89 76 69
26 110 98 84 75
21 119 107 92 83
28 130 116 101 91
29 140 126 110 100
30 151 137 120 109
31 163 147 130 18
32 175 159 140 128
35 213 195 173 159
40 286 264 238 220 '
45 n 343 312 291)
50 466 434 397 3713

*The symbol T denotes the smaller sum of ranks associated with
differences that are all of the same sign. For any given N (number
of ranked ditferences), the obtained T is significant at a given level
if it is equal to or less than the value shown in the table.

10

TABLE 4
STATISTICS ON SOLUTION RATIOS

Percentage .
Tt | M| paw/ge | RAM/VM | APEX of Upper , "u’;'rf" Statistcs
Number* Variables Solution | Solution | Selution ()(:t:él;n(r)n Bound Bound Ratio ;
1 12 630.952 - 630.952 1.14 638.145 | 0.989
2 15 631.946 - 604.211 9.50 661.611 | 0.955
3 18 1,461.984 - 1,492,763 | Optimal | 1,492,763 | 1.000

4 21 1,689.535 | 1,689.535 | 1,689.535 | Optimal | 1,689.535 | 1.000

5 21 1,380.276 | 1,380.276 | 1,363.428 5.89 1,443.734 | 0.956

6 2 1,265.859 | 1,265.859 | 1,265.859 5.97 1,341.431 | 0944 | M =0.9730
1 21 1,453.479 | 1,453.479 | 1,417.578 6.72 1,512.839 | 0.961 =0.0220
8

9

21 1,354.015 | 1,354.015 | 1,232.959 9.48 1,349.967 | 1.003 2= 0.0004
21 1,467.194 | 1,467.194 | 1,467.194 1.28 1,485.534 | 0.988

10 21 1,513.992 | 1,513.992 | 1513992 | 356 | 1,567.890 | 0.966 42
1 21 1,185.199 | 1,185.199 | 1,185.199 | 1.40 | 1,201.792 | 0.986 {
12 21 1,361.286 | 1,361.286 | 1,361.286 | 3.05 | 1,402.805 | 0.970
13 21 1,073.619 | 1,073.618 | 1,047597 | 7.83 | 1,129.624 | 0950
14 45 | 2510933 | 2510933 | 2,393.704 | 4.18 | 2.483.671 | 1.007]
15 45 | 2,735956 | 2,735.956 | 2,735.054 | 314 | 2,820.935 | 0970 | M =09770
16 45 | 2,854954 | 2,854.954 | 2,869.605 | 354 | 2971.189 | 0961 |J =0.0190
17 45 | 2,584.174 | 2,584.174 | 2,584.174 | 122 | 2615701 | 0988 | J2=0.0003
18 45 (3085392 | 3,095.392 | 3,095392 | 1.19 | 3154204 | 0.981
20 45 | 2220971 | 2220971 | 2179195 | 371 | 2.260.043 | 0.983 3
22 45 | 2499623 | 2,499.623 | 2.622.231 | 042 | 2633.244 | 0949
M =0.9750
= 0.0200
32 = 0.0040

*Trials 19 and 21 are omitted because APEX did not reach a solution.
fComputed by multiplying: 1.0 + percentage of optimum (APEX)} x APEX solution.
100
Thus, for trial 22, 2,633.244 = (1.0042) x (2,622.231).

The occurrence of meaningful values greater than 1.0 among entries in this column is, by definition of upper bound,
impossible. Nevertheless, they occur. We do not know whether they are a result of roundoff error, errors in the
returned value of percentage of optimum (APEX), or of other causes. Since we did not know the cause of entries
greater than 1.0, we did not tamper with data by resetting the value of such entries to 1.0.

11

distribution of ratios are greater than 0.944. These values are
taken from standard tables of nonparametric tolerance limits.l

These results indicate that a user of RAM/GP or RAM/VM,
can have a high degree of confidence that results from these
programs are reasonably close to optimum for problems involvirng
no more than 45 decision variables. However, we have no basis
for extrapolating these results to larger problems.

Figure 1 shows the average time used by RAM/GP, RAM/VM,
and MIP2 to complete a problem as a function of the number of
decision variables within the problem. The figure implies that
the RAM/GP program has a reasonable running time for problem

' sizes of 200 to 250 decision variables. For RAM/VM, the run-
ning time would be considerably less for problems of the same
size. The sketchy data for MIP2 seem to indicate that this
program would be too slow to run very large problems.

The conclusions that we can draw from the test results
are reasonably clear. The RAM/GP and RAM/VM programs may be
used with confidence in problems that have up to 45 decision
variables and that do not involve any goal programming. The
results obtained may or may not be optimal, but they will in
all likelihood be quite close to optimal., The testing procedure
could not evaluate the optimization capability of RAM/GP and
RAM/VM for problems larger than 45 decision variables or for
those involving goal programming. The MIP2 program was found
to be incomplete and unsuitable for use.

lR. E. Walpole and R. H. Myers, Probability and Statistics for

Engineers and Seientists, 2nd Ed., New York: MacMillan Pub-
lishing Co., Inc., 1978.

12

UIRYUIPDUNUREI 10y ;" R0, 740 TV T

FIGURE 1
TIME USED TO COMPLETE
PROBLEM AS A FUNCTION OF PROBLEM SIZE

260

240

200 +

Average CPU
Time Used
To Complete
Problem
(seconds)

160
120 -

80 1

a0 b MIP2
0 I 1 1 o

1 L
0 20 40 60 80 100 120 140 160 180

Number of Decision Variables

Unfortunately, we could not meet all the test program
objectives. However, even the limited results obtained are
useful in developing some confidence in the programs and reason-
able exvectations for their performance.

B p—

III. TEST PROGRAM OPERATION

A. Test Problem Generation

The problems generated for the test program toock the
following form:

NG .
Minimize: 2 = I w.n. o
j=1 J]
Subject to: NVAR
< =
iil Cin %3 < By m = 1,NPER
NVAR

j=1 13 i J J
I X <1 k = 1,NGR
X.eGR
X X
xi e {0,1} vi i = 1,NVAR
n. >o¥ j = 1,NG
j=°%;] ’

An input generator was developed that created a set of
pseudorandom numbers and formatted them to be used as input
data by RAM/VM and RAM/GP. The input generator created a
"problem" based on a set of given parameters and a "seed."
The seed,* which was given a unique value for each probler,
was the basis for the random number generator. The parame-
ters for the input generator were the number of (a) 0-1
variables (NVAR), (b) goals (NG), (c) mutually exclusive
groups (NGR), (d) priority levels (NP), and (e) time periods
and values for Bm (m=1,NPER). The values for Aj (3=1,NG)
were based on the value of the parameter, NGR (for most test
problems, Aj=119NGR). The random number generator provided

the values for the coefficients cim and aij‘

®*For an explanation of the use of "seed" numbers in generating
random numbers, see Thesen, Arne, Computer Methods in Operations
Research, New York: Academic Press, 1978.

15

FrECEDING PAGE BLANK-NOT FILMED

h v—- _ i

All test problems had four goals (NG=4), one priority
level (NP=1l), four times periods (NPER=4), and three 0-1
variables in each mutually exclusive group (therefore,
NVAR=3*NGR) . NVAR and NGR were varied during the test program
that determined the size of the problem. Unique sets of co-
efficients (Cim and Aij) were generated for each nroblem.
Within each problem size, the values for Bm were also varied.

Table 5 shows a sample problem created by the input generator.

TABLE 5
SAMPLE DATA CREATED BY INPUT GENERATOR

6 4] 4 <)|

)} 1 1 ! 1 1 1 1
9Z2.48C 2C+398 9e0G36 64+67C 3Z.761 35364
ST¢644 C1+867 49.B6B 79.290 90.894 92.C23
79913 90833 £27.228 44.428 €e967 364395

7520 384274 44577 17.664 56.538 EB«691
1 1] 2 2
1 2 3 1

m P

-~

S
3C.CEG0 45.CCEC 35.C6C 4C.00C :

4C.C17 ©C8.396 13.4B2 B.219 9C2.480 <sL.398&
9+L36 64+67C 32761 35.364 57.644 21.867
49+36C 79+29C 9C+894 9CZ.0C3 T79.913 9C.533
€728 44.428 €967 36.395 7526 38.274

233.CCC 238.00C 238.000 238.CCC

16

Because the input generator created the problems in a
format compatible with RAM/VM and RAM/GP, we had to develop
preprocessors (reformatting programs) to input the same
problems to MIP2 and APEX, These preprocessors read in the
data as created by the input generator and reformatted it to
be compatible with MIP2 and APEX. Table 6 shows the data
provided in Table 5 as reformatted for APEX.

Listings of the computer codes that generated the data
and reformatted them are available from ANSER. The codes
used were implemented on the CDC system. Minor changes
have been made in the coding to make it compatible with the
CDC system and to ensure that the problems generated for APEX
were the same as those generated on the Multics system for
RAM/VM and RAM/GP.

B. Test Problem Solution

APEX is a commercially available optimization program
developed by CDC for use on their operating systems. During
the test program, we used the APEX Mixed Integer Programming
option., This option uses a branch-and-bound algorithm to
solve the mixed integer problem,

1. Run Specifications for the Test Program

We ran APEX as a batch job and submitted the problems
using either a "single solve card" or a "control program."
Examples of the input files for each are shown in Tables 7
and 8.

*All development and applications of RAM programs were done
on the Multics computer system as installed on the Air Force's
Honeywell Series 68/Level 60 computer,

17

CCLUMNT

1coL
1C0L
100
tcoL
1coL
1ccL
1coL
1CcCL
1coL
2¢cCL
2coL
2¢coL
2¢CL
2coL
a2c0L
2C0L
ZcoL
2C0L
acoL
acoL
3coL
acoL
accoL
acoL
acoL
acoL
acoL
15C
“COoL
aCCL
«CCL
4C0L
4CoL
4C0L
4COoL
aCOL
aloL

1CROW
2CRue
JCROL
4CROM
1AROL
ZARCH
JAFCL
JARCH
18CS

1 CROM
2CROV
JCRLN
4CFROL
1ARCY
ARV
JARCOV
4 ARCE
1505

1CROM
2C ROV
3CROV
4CrOV
1&RCY
2ARLY
JARCE
QAFC
1508

1505

1ICRGh
ZCROL
JCEOV
aCROV
ARG
24ROV
3ARON
&ARCN
2s0s

TABLE 6

DATA FORMATTED FOR APEX USE

92.48¢2
57.644
79.913
7.52¢8
4Z.C17
9.€36
49.86¢C
£€7.22

1.€€0
2e.2%8
s21.867
$C.822
38274
£8.3%¢6
6467C
79-29¢
Q4.428
1.CCC
9.236
49.86C
27.228
aku-517
13.48C
32:761
92,894
2967
1.0C0
1.e3C
64.67C
19.29¢
44428
17.664
8.219
35.364
9z.L23
36.09S
1.0ce

| W 8
FCV S
Y

ceCcemwrrrr

A2 NN

CEJFLLL
1CPCA
SCROV
3CRCL
4CEGY
1808
z25Cs
1AEROV
ZALLS
34FLN
LAROA

5C0L
SCOL
S5CCL
SCoL
5C0L
5CoL
5COL
sCoL
scoL
6COL
6COL
6COL
6CCL
6COL
6CoL
6CoL
6CoL
6COL
2se
1oy
2LLV
JuLv
auLv
FaS
PHS
RKS
RHS
RHS
PHS
RHS
RhS
RHS
RhS
PHS
BOUNLS
st LIMITS
s1 LIriTs
LRILATa

1CROW
<CROV
JCROW
4CROV
1AROV
ZAROGL
3J4R0L
Q&RCH
2508
1CRCY
2CFCV
3CRGL
&CRCy
LARCA
ZAROV
JAROV
&LARCY
25Cs
csCs
1ARCH
ZARLY
J4RLN
YR N

1CROV

2CRLY
JCECH
4CF.0u
15Cs

2508

1&FCV
ZAFOV
ARRLY
ALFOV

1coL
&«COL

3z2.761
9C.694
2.967
$6.5338
92.48¢C
57. 644
19.913
T.52¢C
1.¢c¢e
35.364
92.c13
36.3995
88.69}
2¢.398
21.867
92-633
38.274%
1.¢CC
l.CC@
1-0€¢
leREEC
1.c£¢
1.cCC

dg.£€¢C
45.CCC
35.€CC
- 4€.CLC

1.¢¢€¢

1.ecc
2lB.CCC
238.000
238.CCC
233.ce¢C

ObJFUM
LhuF UNC
CLFUNE
CEJILULC

l.pee
t.ce¢
I.ecc
1.ecc

[

TABLE 7

SAMPLE INPUT FILE FOR RUNNING APEX
USING “SINGLE SOLVE CARD”

TABLE 8
SAMPLE INPUT FILE FOR RUNNING APEX
USING “CONTROL PROGRAM"

LCleL /dlb

CLLILC TChloaTSLsFéhoe

CCLlal USLUKSTIL6VZLALELCLCLEE)
CCI13L ATTHCHCAFLEN/UN=LIBRARY)
CLLlAC CLTL,TAELI=TALFLE.

LL145 LLEFINL,TLIF.

CCISC FILLICECLCC.

CC16L “eltCL, -,

CCL 70 AFLRCC,E0r=TLLF)

COE1C DEYFILLL LAY

CCCel LEFLACLLLAY .

Ceed3t LiITe

PEZGl LAVFILLLLLY .

CCE25LC FRLFLACL,LAY .

ctcec /LEGL

INFUT S

SLT KNELT. Lil
SLT HNOLEJ &
SLT KNELLS »
SLT KLNENL &
SLLECT

SLT FFPOLLNL ~LE4LL
CRASI

BIGINT

OUTFUT FULL TLUF
LAIT

Loe6s /ECH
£C0C7C /LOr

20

e

APEX can be submitted using the "single solve card" for
most problems. The solve card allows the user to set the
direction of optimization (MIN or MAX) and select any of a
number of options. Line 00170 of Table 7 is an example of
the "single solve card." "MIN" informs APEX that the problem
being submitted is a minimization problem. "MIP" directs
APEX to use the mixed integer programming option. The "SOF"
option directs APEX to write all output into a direct access
file, defined here as TEMP. The "RL" option establishes a
resource limit that, if exceeded, would cause APEX to dis-
continue processing and exit. Two additional options that
shouid be mentioned are "OPT" and "SV." "OPT" directs APEX,

3 when using the MIP option, to find and prove the optimal
. solution. If the "OPT" option is not included as an argument

on the solve card, APEX will terminate the search for an
optimal solution after finding a solution within 10 percent
of optimum. "SV" will direct APEX to save all the data re-
quired to restart the problem where it was terminated. Other
available options are described in the APEX Reference Manual
furnished by CDC.

Use of an APEX "control program" allows greater flexi-
bility and control of the APEX solution system., The example
in Table 8 shows one way in which it was used during the
test program. "RPOBBND" is the lower bound on the objective
function and places a bound on many of the branches APEX
must explore in solving the mixed integer problem. The
solution to the problem, as- determined by RAM/VM and RAM/GP, A
was input in the "control program" as "RPOBBND" to limit the
number of branches APEX needed to consider, For minimization
problems, the value of "RPOBBND" is complemented (-). The
"control program" also selects the mixed integer option
(MIXINT) and directs APEX to write the output into a file,

} defined here as TEMP,

21

2. Representation of Decision Variables

We used two approaches in setting up the problem in the
proper format for APEX to handle the constraints:

z X, <1 k=1,NGR
xlﬁuﬁ
and X, € {0,1} wvi i=1,NVAR

One approach was to declare the 0-1 variables as bivalent
variables; the other was to use special ordered sets. When
using bivalent variables, all 0-1 variables must be declared
in the bounds section of the input data. The eguations
establishing the mutually exclusive group must be of the
less-than-or-equal-to type, as declared in the rows section.

To use special ordered sets, an additional variable must be
added to each mutually exclusive group. (These added variables
are labeled 1SC and 2SC in Table 6.) The constraint then
becomes an equal-to type, and APEX must select exactly one
variable from each mutually exclusive group. The appearance
of the added variable in the solution means that its associ-
ated mutually exclusive group is not represented in the
solution. Although use of the special ordered sets requires
that additional variables be included in the problems, we
found that APEX generally solves the problems more efficiently
when they are structured as special ordered sets than when
they are set up with bivalent variables. Therefore, most
problems solved during the test program used the special

ordered sets.

22

PRIMARY DISTRIBUTION LIST FOR TDN 80-1

ORGANIZATION

OSD/AE (Lt Col J. Gross)

AF/RDX (Brig Gen M. Roger Peterson)
(Lt Col F. Gerken)

AF/SAMI

OSD/PA&E (Capt B. Berkowitz)
AF/RDP (Mr. G. Fisher)
ASD/ENASC (Mr. Larry Beasley)
AF/XOXIM (Maj E. Wilkins)
AFSC/XRS (Lt Col G. Hollobaugh
SD/YLXA (Lt Michele Focht)

DTIC

ANSER
Library
Reserve Stock
Master Copy (1)

NUMBER OF COPIES

N i N I S I RN S =

= St il o _an

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

4.

REPORT DOCUMENTATION PAGE BEFORE T RUCTIONS e
1. REPORT Nukl!BEn / 2. GOVT ACCESSIONf 3. RECIPIENT’'S CATALOG NUMBER
DN 80-1 ADYHE T 57 _

TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Division N
Resource Allocation Methodology for Air Force vision Note

R&D Planning & PERFORMING ORG. REPORT NUMBER
TDN 80-1
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(3s)
G. Cooper, S. Adams, J. Clary, J, Perlis F-49620-77-C-0025
9. PER7ORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK 1

AREA & WORK UNIT NUMBERS
ANSER (Analytic Services Inc.)
400 Army Navy Drive
Arlineton, Virginia 22202

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Directorate of Program Integration Junc 1980
Headquarters United States Air Force 13, NUMBER OF PAGES
Washington, D.C. 20330 130

14,

MONITORING AGENCY NAME & ADDRESS(!f different from Controlling Office) 15, SECURIYY CLASS. (of this report)

Unclassified

15e. DECL ASS!‘ICATION DOWNGRADING
SCHEDULE

@

. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

~

DISTRIBUTION STATEMENT (of the sbatract entered in Block 20, {f different from Report)

SUPPLEMENTARY NOTES

KEY WORDS (Continue on reverse side if necessary and identify dby dblnck number)

rescurce allocation, heuristics, goal programming, vector maximization,
integer programming, R&D project selection, budgeting

(12 R IS 5
J

20.

ABSTRACT (Continue on revers de i necessery end identily by block number; F
cal- 1979, {ge Director of Program Integration, AF/RDX,' tasked ANSER
to identify and develop a methodology for allocation of funds among Air Force
research, development, and acquisition programs. This report, which consists
of four volumes, describes work accomplished in response to that tasking
and discusses the resource allocation methodology that resulted. Volume I
is an overview of the work. Volume 2 describes the resource allocation
techniques and the general-purpose computer programs that incorporate it.
Volume 3 discusses how to use the interactive computer program developed for

DD ,5S%%, 1473 toition oF 1 nov 83 1S SRsOLETE (over)

JAN 73

UNCLASSIFIED

SECURITY CLASSIFICATION OF YHIS PAGE (When Dars Entersa

e

i b o

o T A oo g

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Eatered)

}use of RAM within AF/RDX. Volume &4 reports on tests made to determine
~“ the computational performance of the methodology. ,b

UNCLASSIFIED

SECUNITY CLASMIFICATION OF Tiil PAGEWhen Date Bntered)

.

